Halcon形状匹配在图像【仿射变换】中的应用

本文介绍了在机器视觉中如何使用仿射变换来对齐图像,包括计算变换矩阵的不同方法和形状匹配技术。通过Halcon提供的函数,如vector_angle_to_rigid、vector_to_rigid等,实现从点对应关系中估算出不同的变换矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器视觉应用中,经常需要对图像进行仿变换
1、在基于参考的视觉检测中,由于待检图像与参考图像或多或少都会存在几何变化(平移、旋转、缩放等),所以在做比较之前一般都要对待检图像进行仿变换以对齐图像。
2、要进行仿变换,必须先获取变换矩阵,状匹配是获取变换矩阵的一种高效的方法。
3、Halcon的如下几个函数是专门用于计算变换矩阵的:
vector_angle_to_rigid :Compute rigid affine transformation from points and angles.  
vector_to_rigid :Approximate rigid affine transformation from point correspondences. 
vector_to_similarity :Approximate an similarity transformation from point correspondences. 
vector_to_hom_mat2d :Approximate an affine transformation from point correspondences. 
4、Halcon中用于状匹配的函数有:
find_shape_model :Find the best matches of shape model in an image. 
find_shape_models :Find the best matches of multiple shape models. 
find_scaled_shape_model :Find the best matches of scale invariant shape model in an image. 
find_scaled_shape_models :Find the best matches of multiple scale invariant shape models. 
5、单匹配计算刚性变换矩阵:vector_angle_to_rigid只需要一个点对及一个角度对即可计算刚性变换矩阵,所以可直接利用find_shape_model的结果,但精度可能稍低。
6、双匹配计算刚性变换矩阵:vector_to_rigid需要至少两个点对的支持,所以需要用两次find_shape_model或用一次find_shape_models,精度会比单匹配高,但仍局限于刚性变换
7、双匹配计算相似变换矩阵:vector_to_similarity用于计算相似变换矩阵,需要至少两个点对的支持,所以需要用两次find_scaled_shape_model或用一次find_scaled_shape_models。
8、三匹配计算一般变换矩阵:vector_to_hom_mat2d用于计算一般的其次变换矩阵,需要至少三个点对的支持,所以需要用三次find_scaled_shape_model或用一次find_scaled_shape_models。
9、综上,在不同情况下,选用相应的变换矩阵类型、状匹配方法,可以达到事半功倍的效果!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值