经典证明:用信息熵证明素数无穷多

通过信息熵原理,本文提供了一种新颖的方法来证明素数的数量是无限的,并且得出了不超过n的素数数量的一个下界表达式。
部署运行你感兴趣的模型镜像

    偶然读到一个非常帅的证明:用信息熵可以瞬间证明素数有无穷多个。这个证明比本 Blog 之前讲过的五种非主流证明 (282, 539, 1678) 看上去都要帅。
    假设我们从所有不超过 n 的自然数中随机选取一个数 N ,并把它分解成质因数的乘积 N = P1^X1 * P2^X2 * ... * Pm^Xm,其中 m 是不超过 n 的素数的个数。注意到由于 2^Xi ≤ Pi^Xi ≤ N ≤ n 对所有 i 都成立,因此我们有 Xi ≤ log(n) 。真正帅的地方来了。考虑随机选取一个 N 带来的信息熵,我们有:

log(n) = H(N)
         = H(X1, X2, ..., Xm)
         ≤ H(X1) + H(X2) + ... + H(Xm)
         ≤ log(log(n)+1) * m

    上面的第一个等号是由信息熵的定义直接得出的。第二个等号是由唯一分解定理得到的:由于一个数可以唯一地分解为质因数的乘积,因此 N 和 (X1, X2, ..., Xm) 是一一对应的,知道了前者也就确定了后者,它们的信息熵是相同的。第三行的不等式是由于我们放开了 Xi 的取值条件(每个 Xi 独立取值可能会导致它们的乘积超过 n ),必然会增加结果的不确定性。而每个 Xi 的取值范围不会超出 0 到 log(n) ,最多 log(n)+1 种情况,因此 H(Xi) ≤ log(log(n)+1) ,这就得到了第四行的那个不等式。
    整理上式,我们得到了 m ≥ log(n) / log(log(n)+1) ,这不但告诉我们当 n 趋于无穷大时不超过 n 的素数个数也是趋于无穷的,还给出了不超过 n 的素数个数的一个下界。

您可能感兴趣的与本文相关的镜像

Qwen3-8B

Qwen3-8B

文本生成
Qwen3

Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值