✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
DIP(双列直插式封装)芯片广泛应用于电子行业,其质量直接影响电子产品的性能和可靠性。传统的 DIP 芯片缺陷检测主要依靠人工目检,效率低、准确性差,无法满足现代化生产的需求。机器视觉技术以其非接触、高效、高精度的优势,为 DIP 芯片缺陷检测提供了新的解决方案。
机器视觉原理
机器视觉是一种计算机视觉技术,通过图像传感器获取目标图像,并利用计算机算法对图像进行处理和分析,从而提取目标特征并进行缺陷检测。DIP 芯片缺陷检测的机器视觉系统主要包括以下几个模块:
-
**图像采集:**使用工业相机或显微镜获取 DIP 芯片的图像。
-
**图像预处理:**对图像进行降噪、增强、分割等预处理操作,以提高缺陷检测的准确性。
-
**特征提取:**提取 DIP 芯片图像中的特征,如边缘、纹理、缺陷等。
-
**缺陷分类:**根据提取的特征,对缺陷进行分类,如缺口、划痕、引脚弯曲等。
缺陷检测算法
DIP 芯片缺陷检测算法主要有以下几种:
-
**模板匹配:**将标准 DIP 芯片图像作为模板,与待检测图像进行匹配,找出差异区域。
-
**边缘检测:**利用 Sobel、Canny 等边缘检测算法,检测 DIP 芯片图像中的边缘,并分析边缘的连续性和完整性。
-
**纹理分析:**分析 DIP 芯片图像的纹理特征,找出纹理异常区域,如划痕、凹陷等。
-
**深度学习:**利用卷积神经网络(CNN)等深度学习算法,训练模型对 DIP 芯片缺陷进行分类。
系统设计
DIP 芯片缺陷检测机器视觉系统的设计需要考虑以下几个方面:
-
**照明:**采用环形光或漫反射光源,均匀照射 DIP 芯片,避免阴影和眩光。
-
**镜头:**选择具有合适焦距和景深的镜头,以获得清晰的图像。
-
**相机:**选择具有高分辨率和高帧率的工业相机,满足缺陷检测的需求。
-
**软件:**开发图像处理和缺陷检测算法,并集成到软件平台中。
应用案例
DIP 芯片缺陷检测机器视觉系统已广泛应用于电子制造行业,如:
-
**半导体封装:**检测 DIP 芯片的引脚弯曲、缺口、划痕等缺陷。
-
**电子组装:**检测 DIP 芯片在电路板上的错位、虚焊等缺陷。
-
**质量控制:**对 DIP 芯片进行批量检测,筛选出不合格产品。
优势
基于机器视觉的 DIP 芯片缺陷检测具有以下优势:
-
**高效:**机器视觉系统可以高速检测 DIP 芯片,大大提高检测效率。
-
**准确:**机器视觉算法能够准确识别和分类缺陷,避免漏检和误检。
-
**非接触:**机器视觉检测不接触 DIP 芯片,避免对芯片造成损坏。
-
**自动化:**机器视觉系统可以实现自动化检测,减少人工参与,降低生产成本。
结论
基于机器视觉的 DIP 芯片缺陷检测技术为电子制造行业提供了高效、准确、非接触的检测解决方案。随着机器视觉技术的不断发展,DIP 芯片缺陷检测的准确性和效率将进一步提高,为电子产品质量控制提供强有力的保障。
📣 部分代码
function [rectx,recty,area,perimeter] = minboundrect(x,y,metric)% minboundrect: Compute the minimal bounding rectangle of points in the plane% usage: [rectx,recty,area,perimeter] = minboundrect(x,y,metric)%% arguments: (input)% x,y - vectors of points, describing points in the plane as% (x,y) pairs. x and y must be the same lengths.%% metric - (OPTIONAL) - single letter character flag which% denotes the use of minimal area or perimeter as the% metric to be minimized. metric may be either 'a' or 'p',% capitalization is ignored. Any other contraction of 'area'% or 'perimeter' is also accepted.%% DEFAULT: 'a' ('area')%% arguments: (output)% rectx,recty - 5x1 vectors of points that define the minimal% bounding rectangle.%% area - (scalar) area of the minimal rect itself.%% perimeter - (scalar) perimeter of the minimal rect as found%%% Note: For those individuals who would prefer the rect with minimum% perimeter or area, careful testing convinces me that the minimum area% rect was generally also the minimum perimeter rect on most problems% (with one class of exceptions). This same testing appeared to verify my% assumption that the minimum area rect must always contain at least% one edge of the convex hull. The exception I refer to above is for% problems when the convex hull is composed of only a few points,% most likely exactly 3. Here one may see differences between the% two metrics. My thanks to Roger Stafford for pointing out this% class of counter-examples.%% Thanks are also due to Roger for pointing out a proof that the% bounding rect must always contain an edge of the convex hull, in% both the minimal perimeter and area cases.%%% See also: minboundcircle, minboundtri, minboundsphere%%% default for metricif (nargin<3) || isempty(metric)metric = 'a';elseif ~ischar(metric)error 'metric must be a character flag if it is supplied.'else% check for 'a' or 'p'metric = lower(metric(:)');ind = strmatch(metric,{'area','perimeter'});if isempty(ind)error 'metric does not match either ''area'' or ''perimeter'''end% just keep the first letter.metric = metric(1);end% preprocess datax=x(:);y=y(:);% not many error checks to worry aboutn = length(x);if n~=length(y)error 'x and y must be the same sizes'end% if var(x)==0% start out with the convex hull of the points to% reduce the problem dramatically. Note that any% points in the interior of the convex hull are% never needed, so we drop them.if n>3%%%%%%%%%%%%%%%%%%%%%%%%%if (var(x)== 0|| var(y)==0)if var(x)== 0x = [x-1;x(1); x+1 ];y = [y ;y(1);y];flag = 1;elsey = [y-1;y(1); y+1 ];x = [x ;x(1);x];flag = 1;endelseflag = 0;%%%%%%%%%%%%%%%%%%%%%%edges = convhull(x,y); % 'Pp' will silence the warningsend% exclude those points inside the hull as not relevant% also sorts the points into their convex hull as a% closed polygon%%%%%%%%%%%%%%%%%%%%if flag == 0%%%%%%%%%%%%%%%%%%%%x = x(edges);y = y(edges);%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%% probably fewer points now, unless the points are fully convexnedges = length(x) - 1;elseif n>1% n must be 2 or 3nedges = n;x(end+1) = x(1);y(end+1) = y(1);else% n must be 0 or 1nedges = n;end% now we must find the bounding rectangle of those% that remain.% special case small numbers of points. If we trip any% of these cases, then we are done, so return.switch nedgescase 0% empty begets emptyrectx = [];recty = [];area = [];perimeter = [];returncase 1% with one point, the rect is simple.rectx = repmat(x,1,5);recty = repmat(y,1,5);area = 0;perimeter = 0;returncase 2% only two points. also simple.rectx = x([1 2 2 1 1]);recty = y([1 2 2 1 1]);area = 0;perimeter = 2*sqrt(diff(x).^2 + diff(y).^2);returnend% 3 or more points.% will need a 2x2 rotation matrix through an angle thetaRmat = @(theta) [cos(theta) sin(theta);-sin(theta) cos(theta)];% get the angle of each edge of the hull polygon.ind = 1:(length(x)-1);edgeangles = atan2(y(ind+1) - y(ind),x(ind+1) - x(ind));% move the angle into the first quadrant.edgeangles = unique(mod(edgeangles,pi/2));% now just check each edge of the hullnang = length(edgeangles);area = inf;perimeter = inf;met = inf;xy = [x,y];for i = 1:nang% rotate the data through -thetarot = Rmat(-edgeangles(i));xyr = xy*rot;xymin = min(xyr,[],1);xymax = max(xyr,[],1);% The area is simple, as is the perimeterA_i = prod(xymax - xymin);P_i = 2*sum(xymax-xymin);if metric=='a'M_i = A_i;elseM_i = P_i;end% new metric value for the current interval. Is it better?if M_i<met% keep this onemet = M_i;area = A_i;perimeter = P_i;rect = [xymin;[xymax(1),xymin(2)];xymax;[xymin(1),xymax(2)];xymin];rect = rect*rot';rectx = rect(:,1);recty = rect(:,2);endend% get the final rect% all doneend % mainline end
⛳️ 运行结果

🔗 参考文献
[1]胡飞飞.基于嵌入式机器视觉的干电池缺陷检测系统的研究[D].广东工业大学[2024-03-24].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
本文介绍了机器视觉技术如何应用于DIP芯片的缺陷检测,包括图像采集、预处理、特征提取和缺陷分类,以及深度学习算法的应用。通过机器视觉,DIP芯片的生产过程实现了高效、准确且非接触的缺陷检测,显著提高了电子制造行业的质量和生产效率。
615

被折叠的 条评论
为什么被折叠?



