【病变检测Matlab代码】基于支持向量机SVM实现糖尿病视网膜病变检测

本文介绍了基于支持向量机(SVM)的糖尿病视网膜病变(DR)检测方法,探讨了其在眼底图像分析中的应用,包括图像预处理、特征提取和DR分类。SVM的高准确率使其适用于DR筛查、诊断和治疗效果评估。随着技术发展,这种方法有望在糖尿病患者健康管理中发挥更大作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 概述

糖尿病视网膜病变(DR)是糖尿病最常见的并发症之一,也是导致失明的最主要原因之一。DR早期症状不明显,但随着病情发展,可出现视力模糊、视物变形、视野缺损等症状。因此,早期发现和治疗DR非常重要。

目前,DR的诊断主要依靠眼底检查。眼底检查是一种侵入性较小的检查方法,但需要专业的眼科医生进行操作。近年来,随着计算机视觉技术的发展,基于计算机视觉的DR检测方法也取得了很大进展。这些方法可以自动分析眼底图像,并检测出DR的早期症状。

2. 基于支持向量机SVM的DR检测方法

支持向量机(SVM)是一种广泛应用于分类任务的机器学习算法。SVM通过在特征空间中寻找一个超平面,将正负样本分开,从而实现分类。SVM具有较强的鲁棒性和泛化能力,因此非常适合用于DR检测任务。

基于SVM的DR检测方法通常包括以下几个步骤:

  1. **图像预处理:**对眼底图像进行预处理,包括图像增强、降噪、分割等。

  2. **特征提取:**从预处理后的图像中提取特征。这些特征可以是图像的纹理特征、颜色特征、形状特征等。

  3. **特征选择:**对提取的特征进行选择,选择出与DR分类最相关的特征。

  4. **训练SVM分类器:**使用选出的特征训练SVM分类器。

  5. **DR检测:**使用训练好的SVM分类器对新的眼底图像进行分类,并检测出DR的早期症状。

3. 基于SVM的DR检测方法的性能

基于SVM的DR检测方法已经取得了较好的性能。在一些公开的数据集上,基于SVM的DR检测方法的准确率可以达到90%以上。

4. 基于SVM的DR检测方法的应用

基于SVM的DR检测方法可以应用于以下几个方面:

  1. **DR筛查:**基于SVM的DR检测方法可以用于对糖尿病患者进行DR筛查。通过对眼底图像进行自动分析,可以检测出DR的早期症状,并及时进行治疗。

  2. **DR诊断:**基于SVM的DR检测方法可以用于对DR患者进行诊断。通过对眼底图像进行自动分析,可以确定DR的严重程度,并制定相应的治疗方案。

  3. **DR治疗效果评估:**基于SVM的DR检测方法可以用于评估DR治疗的效果。通过对治疗前后眼底图像进行自动分析,可以评估治疗的效果,并及时调整治疗方案。

📣 部分代码

% Training Part%Features of Severe DRfor i=1:30       disp(['Processing frame no.',num2str(i)]);    img=imread(['severe dr\',num2str(i),'.png']);    img = imresize(img,[512,512]);    imshow(img);title('Fundus Image');    [feat_disease, seg_img] =  EvaluateFeatures(img);    Severe_Feat(i,:) = feat_disease;       save Severe_Feat;    close allend%Features of Mild DR (Halo)for i=1:35      disp(['Processing frame no.',num2str(i)]);    img=imread(['mild dr\',num2str(i),'.png']);    img = imresize(img,[512,512]);    imshow(img);title('Fundus Image');    [feat_disease, seg_img] =  EvaluateFeatures(img);    Mild_Feat(i,:) = feat_disease;      save Mild_Feat;    close allend% Features of Healthy EYEfor i=1:35      disp(['Processing frame no.',num2str(i)]);    img=imread(['healthy\',num2str(i),'.png']);    img = imresize(img,[512,512]);    imshow(img);title('Fundus Image');    [feat_disease, seg_img] =  EvaluateFeatures(img);    Healthy_Feat(i,:) = feat_disease;       save Healthy_Feat;    close allenddisp('Train done');

⛳️ 运行结果

5. 结论

基于SVM的DR检测方法是一种有效且实用的DR检测方法。该方法可以自动分析眼底图像,并检测出DR的早期症状。该方法可以应用于DR筛查、诊断和治疗效果评估等多个方面。随着计算机视觉技术的发展,基于SVM的DR检测方法的性能还将进一步提高,并将在DR的诊断和治疗中发挥越来越重要的作用。

🔗 参考文献

[1] 潘燕红.基于监督分类的糖尿病视网膜病变检测方法的研究[D].福州大学,2014.

[2] 肖志涛,赵北方,张芳,等.基于k均值聚类和自适应模板匹配的眼底出血点检测方法[J].中国生物医学工程学报, 2015, 34(3):8.DOI:10.3969/j.issn.0258-8021.2015.03.002.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面

need to conduct installation. If you have modified the sources and would like to re-build the package, type 'mex -setup' in MATLAB to choose a compiler for mex first. Then type 'make' to start the installation. Starting from MATLAB 7.1 (R14SP3), the default MEX file extension is changed from .dll to .mexw32 or .mexw64 (depends on 32-bit or 64-bit Windows). If your MATLAB is older than 7.1, you have to build these files yourself. Example: matlab> mex -setup (ps: MATLAB will show the following messages to setup default compiler.) Please choose your compiler for building external interface (MEX) files: Would you like mex to locate installed compilers [y]/n? y Select a compiler: [1] Microsoft Visual C/C++ version 7.1 in C:\Program Files\Microsoft Visual Studio [0] None Compiler: 1 Please verify your choices: Compiler: Microsoft Visual C/C++ 7.1 Location: C:\Program Files\Microsoft Visual Studio Are these correct?([y]/n): y matlab> make Under 64-bit Windows, Visual Studio 2005 user will need "X64 Compiler and Tools". The package won't be installed by default, but you can find it in customized installation options. For list of supported/compatible compilers for MATLAB, please check the following page: http://www.mathworks.com/support/compilers/current_release/ Usage ===== matlab> model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']); -training_label_vector: An m by 1 vector of training labels (type must be double). -training_instance_matrix: An m by n matrix of m training instances with n features. It can be dense or sparse (type must be double). -libsvm_options: A string of training options in the same format as that of LIBSVM. matlab> [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']); -testing_label_vector: An m by 1 vector of prediction labels. If labels of test data are unknown, simply use any random values. (type must be double) -testing_instance_matrix: An m by n matrix of m testing instances with n features. It can be dense or sparse. (type must be double) -model: The output of svmtrain. -libsvm_options: A string of testing options in the same format as that of LIBSVM. Returned Model Structure ======================== The 'svmtrain' function returns a model which can be used for future prediction. It is a structure and is organized as [Parameters, nr_class, totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]: -Parameters: parameters -nr_class: number of classes; = 2 for regression/one-class svm -totalSV: total #SV -rho: -b of the decision function(s) wx+b -Label: label of each class; empty for regression/one-class SVM -ProbA: pairwise probability information; empty if -b 0 or in one-class SVM -ProbB: pairwise probability information; empty if -b 0 or in one-class SVM -nSV: number of SVs for each class; empty for regression/one-class SVM -sv_coef: coefficients for SVs in decision functions -SVs: support vectors If you do not use the option '-b 1', ProbA and ProbB are empty matrices. If the '-v' option is specified, cross validation is conducted and the returned model is just a scalar: cross-validation accuracy for classification and mean-squared error for regression. More details about this model can be found in LIBSVM FAQ (http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVM implementation document (http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf). Result of Prediction ==================== The function 'svmpredict' has three outputs. The first one, predictd_label, is a vector of predicted labels. The second output, accuracy, is a vector including accuracy (for classification), mean squared error, and squared correlation coefficient (for regression). The third is a matrix containing decision values or probability estimates (if '-b 1' is specified). If k is the number of classes, for decision values, each row includes results of predicting k(k-1)/2 binary-class SVMs. For probabilities, each row contains k values indicating the probability that the testing instance is in each class. Note that the order of classes here is the same as 'Label' field in the model structure. Examples ======== Train and test on the provided data heart_scale: matlab> load heart_scale.mat matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07'); matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training data For probability estimates, you need '-b 1' for training and testing: matlab> load heart_scale.mat matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07 -b 1'); matlab> load heart_scale.mat matlab> [predict_label, accuracy, prob_estimates] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1'); To use precomputed kernel, you must include sample serial number as the first column of the training and testing data (assume your kernel matrix is K, # of instances is n): matlab> K1 = [(1:n)', K]; % include sample serial number as first column matlab> model = svmtrain(label_vector, K1, '-t 4'); matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1, model); % test the training data We give the following detailed example by splitting heart_scale into 150 training and 120 testing data. Constructing a linear kernel matrix and then using the precomputed kernel gives exactly the same testing error as using the LIBSVM built-in linear kernel. matlab> load heart_scale.mat matlab> matlab> % Split Data matlab> train_data = heart_scale_inst(1:150,:); matlab> train_label = heart_scale_label(1:150,:); matlab> test_data = heart_scale_inst(151:270,:); matlab> test_label = heart_scale_label(151:270,:); matlab> matlab> % Linear Kernel matlab> model_linear = svmtrain(train_label, train_data, '-t 0'); matlab> [predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data, model_linear); matlab> matlab> % Precomputed Kernel matlab> model_precomputed = svmtrain(train_label, [(1:150)', train_data*train_data'], '-t 4'); matlab> [predict_label_P, accuracy_P, dec_values_P] = svmpredict(test_label, [(1:120)', test_data*train_data'], model_precomputed); matlab> matlab> accuracy_L % Display the accuracy using linear kernel matlab> accuracy_P % Display the accuracy using precomputed kernel Note that for testing, you can put anything in the testing_label_vector. For more details of precomputed kernels, please read the section ``Precomputed Kernels'' in the README of the LIBSVM package. Other Utilities =============== A matlab function libsvmread reads files in LIBSVM format: [label_vector, instance_matrix] = libsvmread('data.txt'); Two outputs are labels and instances, which can then be used as inputs of svmtrain or svmpredict. A matlab function libsvmwrite writes Matlab matrix to a file in LIBSVM format: libsvmwrite('data.txt', label_vector, instance_matrix] The instance_matrix must be a sparse matrix. (type must be double) These codes are prepared by Rong-En Fan and Kai-Wei Chang from National Taiwan University. Additional Information ====================== This interface was initially written by Jun-Cheng Chen, Kuan-Jen Peng, Chih-Yuan Yang and Chih-Huai Cheng from Department of Computer Science, National Taiwan University. The current version was prepared by Rong-En Fan and Ting-Fan Wu. If you find this tool useful, please cite LIBSVM as follows Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm For any question, please contact Chih-Jen Lin , or check the FAQ page: http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#/Q9:_MATLAB_interface
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值