✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
协同群体优化算法(SSOA)是一种基于群体智能的优化算法,它模拟了自然界中群体协同工作的过程,通过群体成员之间的合作和竞争来寻找最优解。本文将介绍SSOA算法的流程及其在优化问题中的应用。
SSOA算法的流程可以分为初始化、个体更新、群体更新和终止条件四个步骤。
首先是初始化阶段,算法需要初始化一定数量的群体成员,这些成员可以是随机生成的个体,也可以是根据问题特点进行初始化。接下来是个体更新阶段,每个个体根据一定的更新策略进行更新,以适应当前环境的变化。在群体更新阶段,群体中的成员相互交流信息,通过合作和竞争来调整自身状态,以期望获得更好的适应性。最后是终止条件阶段,当满足一定的终止条件时,算法停止运行并输出最优解。
SSOA算法在解决优化问题时具有一定的优势。首先,它能够在搜索过程中充分利用群体成员之间的信息交流,从而避免陷入局部最优解。其次,通过群体协同工作的方式,算法具有较强的全局搜索能力,能够快速收敛到最优解附近。此外,SSOA算法还具有较好的鲁棒性和适应性,能够适用于不同类型的优化问题。
在实际应用中,SSOA算法已被广泛应用于各种优化问题的求解中,如工程优化、机器学习、数据挖掘等领域。例如,在工程优化中,可以利用SSOA算法对复杂的工程结构进行优化设计;在机器学习中,可以利用SSOA算法对模型参数进行优化调整;在数据挖掘中,可以利用SSOA算法对大规模数据集进行特征选择和模式挖掘。
总之,协同群体优化算法(SSOA)是一种有效的优化算法,它模拟了自然界中群体协同工作的过程,具有较强的全局搜索能力和适应性,已被广泛应用于各种优化问题的求解中。希望本文能够帮助读者更好地了解SSOA算法的流程及其在优化问题中的应用。
📣 部分代码
%_______________________________________________________________________________________%% Synergistic Swarm Optimization Algorithm (SSOA) source codes (version 1.0) %% %% Developed in MATLAB R2015a (7.13) %% Author and programmer: Laith Abualigah %% e-Mail: Aligah.2020@gmail.com %% Homepage: %% 1- https://scholar.google.com/citations?user=39g8fyoAAAAJ&hl=en %% 2- https://www.researchgate.net/profile/Laith_Abualigah %% %% Main paper: %%_____________Synergistic Swarm Optimization Algorithm (SSOA) %%_______________________________________________________________________________________%function [LB,UB,Dim,F_obj] = Get_F(F)switch Fcase 'F1'F_obj = @F1;LB=-100;UB=100;Dim =10;case 'F2'F_obj = @F2;LB=-10;UB=10;Dim = 10;case 'F3'F_obj = @F3;LB=-100;UB=100;Dim = 10;case 'F4'F_obj = @F4;LB=-100;UB=100;Dim = 10;case 'F5'F_obj = @F5;LB=-30;UB=30;Dim = 10;case 'F6'F_obj = @F6;LB=-100;UB=100;Dim = 10;case 'F7'F_obj = @F7;LB=-1.28;UB=1.28;Dim = 10;case 'F8'F_obj = @F8;LB=-500;UB=500;Dim = 10;case 'F9'F_obj = @F9;LB=-5.12;UB=5.12;Dim = 10;case 'F10'F_obj = @F10;LB=-32;UB=32;Dim = 10;case 'F11'F_obj = @F11;LB=-600;UB=600;Dim = 10;case 'F12'F_obj = @F12;LB=-50;UB=50;Dim = 10;case 'F13'F_obj = @F13;LB=-50;UB=50;Dim = 10;case 'F14'F_obj = @F14;LB=-65.536;UB=65.536;Dim=2;case 'F15'F_obj = @F15;LB=-5;UB=5;Dim=4;case 'F16'F_obj = @F16;LB=-5;UB=5;Dim=2;case 'F17'F_obj = @F17;LB=[-5,0];UB=[10,15];Dim=2;case 'F18'F_obj = @F18;LB=-2;UB=2;Dim=2;case 'F19'F_obj = @F19;LB=0;UB=1;Dim=3;case 'F20'F_obj = @F20;LB=0;UB=1;Dim=6;case 'F21'F_obj = @F21;LB=0;UB=10;Dim=4;case 'F22'F_obj = @F22;LB=0;UB=10;Dim=4;case 'F23'F_obj = @F23;LB=0;UB=10;Dim=4;endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F1function o = F1(x)o=sum(x.^2);end% F2function o = F2(x)o=sum(abs(x))+prod(abs(x));end% F3function o = F3(x)dim=size(x,2);o=0;for i=1:dimo=o+sum(x(1:i))^2;endend% F4function o = F4(x)o=max(abs(x));end% F5function o = F5(x)dim=size(x,2);o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);end% F6function o = F6(x)o=sum(abs((x+.5)).^2);end% F7function o = F7(x)dim=size(x,2);o=sum([1:dim].*(x.^4))+rand;end% F8function o = F8(x)o=sum(-x.*sin(sqrt(abs(x))));end% F9function o = F9(x)dim=size(x,2);o=sum(x.^2-10*cos(2*pi.*x))+10*dim;end% F10function o = F10(x)dim=size(x,2);o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);end% F11function o = F11(x)dim=size(x,2);o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;end% F12function o = F12(x)dim=size(x,2);o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));end% F13function o = F13(x)dim=size(x,2);o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));end% F14function o = F14(x)aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];for j=1:25bS(j)=sum((x'-aS(:,j)).^6);endo=(1/500+sum(1./([1:25]+bS))).^(-1);end% F15function o = F15(x)aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);end% F16function o = F16(x)o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);end% F17function o = F17(x)o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;end% F18function o = F18(x)o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...(30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));end% F19function o = F19(x)aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];o=0;for i=1:4o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F20function o = F20(x)aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];cH=[1 1.2 3 3.2];pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;....2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];o=0;for i=1:4o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));endend% F21function o = F21(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:5o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F22function o = F22(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:7o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endend% F23function o = F23(x)aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];o=0;for i=1:10o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);endendfunction o=Ufun(x,a,k,m)o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));end
⛳️ 运行结果




本文详细介绍了协同群体优化算法(SSOA),包括其流程、在优化问题中的优势以及在工程优化、机器学习领域的应用实例。SSOA通过群体协作和竞争寻优,具有强大的全局搜索和适应性。
333

被折叠的 条评论
为什么被折叠?



