【图像分割】基于改进的主动轮廓模型实现图像分割附matlab代码

本文介绍了一种新的基于预测理论的图像分割分布测度,通过标准差量化密度函数间的差异。通过几何主动轮廓方法,我们将该测度融入算法,并与流行的Fisher信息度量进行理论对比。实证分析显示,不同类型的测度对分割结果有显著影响,特别在Kaposi's Sarcoma病理图像上进行了对比展示。算法在医疗图像挑战中表现出有效性,证实了新测度在图像分割领域的实用价值。

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机

⛄ 内容介绍

In this paper, we present a new distribution metric for image segmentation that arises as a result in prediction theory. Forming a natural geodesic, our metric quantifies "distance" for two density functionals as the standard deviation of the difference between logarithms of those distributions. Using level set methods, we incorporate an energy model based on the metric into the Geometric Active Contour framework. Moreover, we briefly provide a theoretical comparison between the popular Fisher Information metric, from which the Bhattacharyya distance originates, with the newly proposed similarity metric. In doing so, we demonstrate that segmentation results are directly impacted by the type of metric used. Specifically, we qualitatively compare the Bhattacharyya distance and our algorithm on the Kaposi Sarcoma, a pathology that infects the skin. We also demonstrate the algorithm on several challenging medical images, which further ensure the viability of the metric in the context of image segmentation.

⛄ 部分代码

clear all

close all

clc

img=double(dicomread('IM0.dcm'));%读取图像

iter = 1000;

alpha = .05;

dt = .4;

flag_approx = 0;

[M,N]=size(img);

mask=zeros(M,N);

mask(200:400,100:400)=1;

% %read img path

% img = double(imread(img_path));

if(size(img,3)~=1);

    disp(['WARNING:  Code only works for gray scale, please modify '...,

        'code. Will continue will process input image as gray scale.']);

    img = (img(:,:,1)+img(:,:,2)+img(:,:,3))/3;

end

%if no pre_mask given, display image so user can select initialization

if(~exist('mask','var'));

    imshow(img,'InitialMagnification',200);

    mask = double(get_rect_mask(img));

else

    mask = mask;

end

%compute sdf function

phi = bwdist(mask) - bwdist(1-mask)+im2double(mask);

%run active contour

[result,pin,pout] = Tryphon_NB(img, phi, iter, dt, alpha,flag_approx);

⛄ 运行结果

⛄ 参考文献

[1] Sandhu R ,  Georgiou T ,  Tannenbaum A . A New Distribution Metric for Image Segmentation[C]// Imaging Processing pt.1. School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250;Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, 2008.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值