1 简介
准确的电池荷电状态(SOC)估计是电动车辆正常工作的基本前提.针对目前电池荷电状态估计时存在的非线性,不平稳等干扰因素的影响,本工作提出了基于灰狼优化算法的极限学习机的锂离子电池SOC估计方法,以提高估计精度并缩短估计时长.传统的极限学习机(ELM)直接随机生成模型参数,并对SOC进行估计,该方法运行速度快且泛化性能好.但极限学习机需要找出最优的隐含层神经元参数才能达到较高的精度.因此,通过灰狼优化算法(GWO)进一步优化模型参数,并通过选择合适的激活函数,弥补了传统极限学习机的不足.


2 部分代码
%___________________________________________________________________%%%___________________________________________________________________%% Grey Wolf Optimizerfunction [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize alpha, beta, and delta_posAlpha_pos=zeros(1,dim);Alpha_score=inf; %change this to -inf for maximization problemsBeta_pos=zeros(1,dim);Beta_score=inf; %change this to -inf for maximization problemsDelta_pos=zeros(1,dim);Delta_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);l=0;% Loop counter% Main loopwhile l<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update Alpha, Beta, and Deltaif fitness<Alpha_scoreAlpha_score=fitness; % Update alphaAlpha_pos=Positions(i,:);endif fitness>Alpha_score && fitness<Beta_scoreBeta_score=fitness; % Update betaBeta_pos=Positions(i,:);endif fitness>Alpha_score && fitness>Beta_score && fitness<Delta_scoreDelta_score=fitness; % Update deltaDelta_pos=Positions(i,:);endenda=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0% Update the Position of search agents including omegasfor i=1:size(Positions,1)for j=1:size(Positions,2)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A1=2*a*r1-a; % Equation (3.3)C1=2*r2; % Equation (3.4)D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1r1=rand();r2=rand();A2=2*a*r1-a; % Equation (3.3)C2=2*r2; % Equation (3.4)D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2r1=rand();r2=rand();A3=2*a*r1-a; % Equation (3.3)C3=2*r2; % Equation (3.4)D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)endendl=l+1;Convergence_curve(l)=Alpha_score;end
3 仿真结果

4 参考文献
[1]王桥, 魏孟, 叶敏,等. 基于灰狼算法优化极限学习机的锂离子电池SOC估计[J]. 储能科学与技术, 2021.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文介绍了一种利用灰狼优化算法改进极限学习机的锂离子电池荷电状态(SOC)估计方法。该方法旨在增强估计的准确性并缩短计算时间,通过GWO优化ELM的参数,并结合合适的激活函数,弥补了传统ELM的不足,适用于电动车电池管理系统的高效实时应用。
1325

被折叠的 条评论
为什么被折叠?



