1 简介








2 部分代码
%% --------------- All subfunctions are list below ------------------%% Get cuckoos by ramdom walkfunction nest=get_cuckoos(nest,best,Lb,Ub)% Levy flightsn=size(nest,1);% Levy exponent and coefficient% For details, see equation (2.21), Page 16 (chapter 2) of the book% X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).beta=3/2;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);for j=1:n,s=nest(j,:);% This is a simple way of implementing Levy flights% For standard random walks, use step=1;%% Levy flights by Mantegna's algorithmu=randn(size(s))*sigma;v=randn(size(s));step=u./abs(v).^(1/beta);% In the next equation, the difference factor (s-best) means that% when the solution is the best solution, it remains unchanged.stepsize=0.01*step.*(s-best);% Here the factor 0.01 comes from the fact that L/100 should the typical% step size of walks/flights where L is the typical lenghtscale;% otherwise, Levy flights may become too aggresive/efficient,% which makes new solutions (even) jump out side of the design domain% (and thus wasting evaluations).% Now the actual random walks or flightss=s+stepsize.*randn(size(s));% Apply simple bounds/limitsnest(j,:)=simplebounds(s,Lb,Ub);endend
3 仿真结果


4 参考文献
[1]王庆喜, 储泽楠. 基于动态布谷鸟搜索算法的PID控制器参数优化[J]. 计算机测量与控制, 2015, 23(4):4.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
本文介绍了使用Levy飞行改进的布谷鸟搜索算法在PID控制器参数优化中的应用。算法通过随机漫步和Levy flights实现种群更新,确保在搜索空间中的高效探索。仿真结果显示算法能有效优化控制器性能,且代码中提供了关键实现细节。作者擅长智能优化算法和Matlab仿真,博客部分内容引用了相关文献,并声明了可能的版权信息。

被折叠的 条评论
为什么被折叠?



