1 简介
随着电力负荷的迅猛增长和用电环境的越发复杂,对短期负荷预测的精度与可靠性提出更高要求.为解决最小二乘支持向量机(LSSVM)算法中核参数和惩戒参数依赖经验选取导致的短期负荷预测精度较低,收敛速度较慢的问题,提出一种基于改进鲸鱼算法优化最小二乘支持向量机(IWOALSSVM)的负荷预测方法.首先通过引入非线性因子和自适应权重实现鲸鱼算法的改进,进而利用其改进算法对LSSVM参数进行寻优,最后建立短期负荷预测模型.结合某地区的实测数据进行预测分析,结果表明,相较于LSSVM,PSOLSSVM,改进模型预测精度和收敛速度均有大幅提高,在电力企业中具有良好的实际应用价值.

2 部分代码
%_________________________________________________________________________%% 鲸鱼优化算法 %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leaderLeader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Leader_score % Change this to > for maximization problemLeader_score=fitness; % Update alphaLeader_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agentsfor i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5if abs(A)>=1rand_leader_index = floor(SearchAgents_no*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Leader_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);endendendt=t+1;Convergence_curve(t)=Leader_score;end
3 仿真结果

4 参考文献
[1]刘沛津, 胡冀飞, 贺宁,等. 改进鲸鱼算法优化LSSVM的短期电力负荷预测研究[J]. 现代电子技术, 2021, 44(13):5.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
针对LSSVM算法参数选择依赖经验导致预测精度低的问题,提出基于改进鲸鱼算法(IWOA)优化LSSVM的短期负荷预测模型。通过非线性因子和自适应权重改进鲸鱼算法,实现LSSVM参数寻优。实证分析显示,该模型预测精度和收敛速度显著提升。
921

被折叠的 条评论
为什么被折叠?



