1 简介
针对基本鲸鱼优化算法在处理复杂全局优化问题时存在解精度低和收敛速度慢等缺点,提出一种收敛因子随进化迭代次数非线性变化的改进鲸鱼优化算法.该算法利用混沌方法替代随机方法初始化种群,使群体具有较好的多样性.受粒子群算法惯性权重启发,设计出一种随进化迭代次数增加而非线性变化的收敛因子更新公式,以平衡算法的全局搜索和局部搜索能力.对当前最优鲸鱼个体执行混沌扰动策略以扩大其搜索范围.选取6个高维标准测试函数进行数值实验,结果表明该算法具有较高的收敛精度和较快的收敛速度.
2 部分代码
%_________________________________________________________________________%% 鲸鱼优化算法 %%_________________________________________________________________________%% The Whale Optimization Algorithmfunction [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leaderLeader_pos=zeros(1,dim);Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agentsPositions=initialization(SearchAgents_no,dim,ub,lb);Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loopwhile t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Leader_score % Change this to > for maximization problemLeader_score=fitness; % Update alphaLeader_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agentsfor i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5if abs(A)>=1rand_leader_index = floor(SearchAgents_no*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Leader_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);endendendt=t+1;Convergence_curve(t)=Leader_score;end
3 仿真结果


4 参考文献
[1]龙文, 伍铁斌, 唐斌. 收敛因子非线性变化的鲸鱼优化算法[J]. 兰州理工大学学报, 2017, 43(6):6.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
针对鲸鱼优化算法在处理复杂全局优化问题时存在的精度和收敛速度问题,该文提出了一种新的改进算法。通过混沌初始化增强种群多样性,并采用非线性变化的收敛因子平衡全局和局部搜索。结合混沌扰动策略,提高算法的收敛精度和速度。实验证明,该算法在多个高维测试函数上表现出优秀性能。
239

被折叠的 条评论
为什么被折叠?



