关于何时使用cudaDeviceSynchronize

CUDA内核启动虽是异步的,但在同一流中的GPU任务按序执行。cudaDeviceSynchronize()用于在CPU主机线程中等待GPU完成所有先前请求的任务。cudaThreadSynchronize()已被废弃,推荐使用cudaDeviceSynchronize。cudaStreamSynchronize()则针对指定流进行同步。
部署运行你感兴趣的模型镜像

When to call cudaDeviceSynchronize

why do we need cudaDeviceSynchronize(); in kernels with device-printf?

Although CUDA kernel launches are asynchronous, all GPU-related tasks placed in one stream (which is default behaviour) are executed sequentially.

So, for example,

kernel1<<<X,Y>>>(...); // kernel start execution, CPU continues to next statement
kernel2<<<X,Y>>>(...); // kernel is placed in queue and will start after kernel1 finishes, CPU continues to next statement
cudaMemcpy(...); // CPU blocks until ememory is copied, memory copy starts only

而GOOGLE中文排名第二的解释是不太完整的:

These are all barriers. Barriers prevent code execution beyond the barrier until some condition is met.

  1. cudaDeviceSynchronize() halts execution in the CPU/host thread (that the cudaDeviceSynchronize was issued in) until the GPU has finished processing all previously requested cuda tasks (kernels, data copies, etc.)
  2. cudaThreadSynchronize() as you've discovered, is just a deprecated version of cudaDeviceSynchronize. Deprecated just means that it still works for now, but it's recommended not to use it (use cudaDeviceSynchronize instead) and in the future, it may become unsupported. But cudaThreadSynchronize() and cudaDeviceSynchronize() are basically identical.
  3. cudaStreamSynchronize() is similar to the above two functions, but it prevents further execution in the CPU host thread until the GPU has finished processing all previously requested cuda tasks that were issued in the referenced stream. So cudaStreamSynchronize() takes a stream id as it's only parameter. cuda tasks issued in other streams may or may not be complete when CPU code execution continues beyond this barrier.

您可能感兴趣的与本文相关的镜像

PyTorch 2.8

PyTorch 2.8

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值