C++11基础

一、C++11简介

        在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了
C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞
进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。

        从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于
C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中
约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言

        相比较而言,C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不

仅功能更强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个重点去学习。

二、列表初始化

{}的初始化

在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。

    int a[] = { 1,2,3,4,5,6 };//定义一个含有1 2 3 4 5 6 的数组
    vector<int> a1(10, 1);//构造一个含有10个1的数组
    vector<int> a2 = { 1,2,3,4,5,6 };//构造一个 1 2 3 4 5 6 的数组

C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自定义的类型,使用初始化列表时,可添加等号(=),也可不添加。

//结构体Point
struct Point
{
    int _x;
    int _y;
};

int main()
{
    int x1 = 1;
    int x2{ 2 };
    int array1[]{ 1, 2, 3, 4, 5 };
    int array2[5]{ 0 };
    Point p{ 1, 2 };
    // C++11中列表初始化也可以适用于new表达式中
    int* pa = new int[4]{ 0 };
    return 0;
}

当我们创建对象时也可以使用上述的方法:

class Date
{
public:
    Date(int year, int month, int day)
        :_year(year)
        , _month(month)
        , _day(day)
    {
        cout << "Date(int year, int month, int day)" << endl;
    }
private:
    int _year;
    int _month;
    int _day;
};

int main()
{
    Date d1(2022, 1, 1); // old style
    // C++11支持的列表初始化,这里会调用构造函数初始化
    Date d2{ 2022, 1, 2 };
    Date d3 = { 2022, 1, 3 };
    return 0;
}

std::initializer_list

initializer_list是为了让上面的列表初始化能落地而实现的,例如下述代码:

vector<int> a1 = { 10, 20, 30 };//构造一个 1 2 3 4 5 6 的数组

 上述代码中的{ 1,2,3,4,5,6 }就是一个initializer_list类型,我们可以在编译器中打印出它们的类型:

int main()
{
    // the type of il is an initializer_list 
    auto a1 = { 10, 20, 30 };
    cout << typeid(a1).name() << endl;//class std::initializer_list<int>
    return 0;
}

 

可以看到auto类型自动将a1识别成了initializer_list

std:initializer_list一般是作为构造函数的参数,C++11对STL中的许多容器都增加了std:initializer_list作为参数的构造函数,这样对初始化容器对象就更方便了,也可以作为operator=的参数,这样就可以用大括号赋值。

总结一下就是:initializer_list是为了让容器能够支持列表初始化而产生的。

我们之前模拟过vector的模拟实现,如果要让它也支持列表初始化,那么就需要加一个以std:initializer_list为参数的构造函数:

namespace bear
{
    template<class T>
    class vector {
    public:
        typedef T* iterator;
        vector(initializer_list<T> l)
        {
            _start = new T[l.size()];
            _finish = _start + l.size();
            _endofstorage = _start + l.size();
            //迭代器遍历放入
            iterator vit = _start;
            typename initializer_list<T>::iterator lit = l.begin();
            while (lit != l.end())
            {
                *vit++ = *lit++;
            }
            //范围for遍历
            //for (auto e : l)
            //   *vit++ = e;
        }
        vector<T>& operator=(initializer_list<T> l) {
            vector<T> tmp(l);
            std::swap(_start, tmp._start);
            std::swap(_finish, tmp._finish);
            std::swap(_endofstorage, tmp._endofstorage);
            return *this;
        }
    private:
        iterator _start;
        iterator _finish;
        iterator _endofstorage;
    };
}

说明一下:

        在构造函数中遍历initializer_list时可以使用迭代器遍历,也可以使用范围for遍历,因为范围for底层实际采用的就是迭代器方式遍历。


        使用迭代器方式遍历时,需要在迭代器类型前面加上typename关键字,指明这是一个类型名字。因为这个迭代器类型定义在一个类模板中,在该类模板未被实例化之前编译器是无法识别这个类型的。


        最好也增加一个以initializer_list作为参数的赋值运算符重载函数,以支持直接用列表对容器对象进行赋值,但实际也可以不增加。

三、变量类型推导及声明

在C++11中,提供了多种简化声明的方式,特别是在使用模板时:

auto

在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局
部的变量默认就是自动存储类型,所以auto就没什么价值了。

C++11中废弃auto原来的用法,将
其用于实现自动类型推断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初
始化值的类型。

例如下列情景:

int main()
{
	int i = 10;
	auto p = &i;
	auto pf = strcpy;

	cout << typeid(p).name() << endl;  //int *
	cout << typeid(pf).name() << endl; //char * (__cdecl*)(char *,char const *)

	map<string, string> dict = { { "sort", "排序" }, { "insert", "插入" } };

	//map<string, string>::iterator it = dict.begin();
	auto it = dict.begin();  //简化代码

	return 0;
}

 如果我们不用auto来代替it的类型,那么我们就会写很长的一段类型,非常的复杂。

decltype

关键字decltype可以将变量的类型声明为表达式指定的类型。例如:

template<class T1, class T2>
void F(T1 t1, T2 t2)
{
	decltype(t1*t2) ret;
	cout << typeid(ret).name() << endl;
}
int main()
{
	const int x = 1;
	double y = 2.2;

	decltype(x*y) ret;
	decltype(&x) p;
	cout << typeid(ret).name() << endl; //double
	cout << typeid(p).name() << endl;   //int const *

	F(1, 'a'); //int
	F(1, 2.2); //double

	return 0;
}

 该方法也可以用来推演函数返回值的类型。

nullptr

由于C++中NULL被定义成字面量0,这样就可能会带来一些问题,因为0既能表示指针常量,又能表示整型常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。

在大部分情况下使用NULL不会存在什么问题,但是在某些极端场景下就可能会导致匹配错误。例如:

void f(int arg)
{
	cout << "void f(int arg)" << endl;
}
void f(int* arg)
{
	cout << "void f(int* arg)" << endl;
}
int main()
{
	f(NULL);    //void f(int arg)
	f(nullptr); //void f(int* arg)
	return 0;
}

NULL和nullptr的含义都是空指针,所以这里调用函数时肯定希望匹配到的都是参数类型为int*的重载函数,但最终却因为NULL本质是字面量0,而导致NULL匹配到了参数为int类型的重载函数,因此在C++中一般推荐使用nullptr。 

四、范围for循环

这个大家应该都比较了解了:

int main()
{
	int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
	//将数组元素值全部乘以2
	for (auto& e : arr)
	{
		e *= 2;
	}
	//打印数组中的所有元素
	for (auto e : arr)
	{
		cout << e << " ";
	}
	cout << endl;
	return 0;
}

 使用条件

 

一、for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。

二、迭代的对象要支持++和==操作
范围for本质上是由迭代器支持的,在代码编译的时候,编译器会自动将范围for替换为迭代器的形式。而由于在使用迭代器遍历时需要对对象进行++和==操作,因此使用范围for的对象也需要支持++和==操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值