GitChat 作者:鸣宇淳
原文: 史上最详细的Hadoop环境搭建
前言
Hadoop在大数据技术体系中的地位至关重要,Hadoop是大数据技术的基础,对Hadoop基础知识的掌握的扎实程度,会决定在大数据技术道路上走多远。
这是一篇入门文章,Hadoop的学习方法很多,网上也有很多学习路线图。本文的思路是:以安装部署Apache Hadoop2.x版本为主线,来介绍Hadoop2.x的架构组成、各模块协同工作原理、技术细节。安装不是目的,通过安装认识Hadoop才是目的。
本文分为五个部分、十三节、四十九步。
第一部分:Linux环境安装
Hadoop是运行在Linux,虽然借助工具也可以运行在Windows上,但是建议还是运行在Linux系统上,第一部分介绍Linux环境的安装、配置、Java JDK安装等。
第二部分:Hadoop本地模式安装
Hadoop本地模式只是用于本地开发调试,或者快速安装体验Hadoop,这部分做简单的介绍。
第三部分:Hadoop伪分布式模式安装
学习Hadoop一般是在伪分布式模式下进行。这种模式是在一台机器上各个进程上运行Hadoop的各个模块,伪分布式的意思是虽然各个模块是在各个进程上分开运行的,但是只是运行在一个操作系统上的,并不是真正的分布式。
第四部分:完全分布式安装
完全分布式模式才是生产环境采用的模式,Hadoop运行在服务器集群上,生产环境一般都会做HA,以实现高可用。
第五部分:Hadoop HA安装
HA是指高可用,为了解决Hadoop单点故障问题,生产环境一般都做HA部署。这部分介绍了如何配置Hadoop2.x的高可用,并简单介绍了HA的工作原理。 安装过程中,会穿插简单介绍涉及到的知识。希望能对大家有所帮助。
第一部分:Linux环境安装
略,建议直接看原文。(linux+jdk)
第二部分:Hadoop本地模式安装
Hadoop部署模式
Hadoop部署模式有:本地模式、伪分布模式、完全分布式模式、HA完全分布式模式。
区分的依据是NameNode、DataNode、ResourceManager、NodeManager等模块运行在几个JVM进程、几个机器。
模式名称 | 各个模块占用JVM进程数 | 各个模块运行在几个机器数上 |
---|---|---|
本地模式 | 1 | 1 |
伪分布式模式 | N个 | 1个 |
完全分布式 | N个 | N个 |
HA完全分布式 | N个 | N个 |
本地模式部署
本地模式是最简单的模式,所有模块都运行与一个JVM进程中,使用的本地文件系统,而不是HDFS,本地模式主要是用于本地开发过程中的运行调试用。下载hadoop安装包后不用任何设置,默认的就是本地模式。
解压hadoop后就是直接可以使用
1、 创建一个存放本地模式hadoop的目录
[hadoop@bigdata-senior01 modules]$ mkdir /opt/modules/hadoopstandalone
2、 解压hadoop文件
[hadoop@bigdata-senior01 modules]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz -C /opt/modules/hadoopstandalone/
3、 确保JAVA_HOME环境变量已经配置好
[hadoop@bigdata-senior01 modules]$ echo ${JAVA_HOME}
/opt/modules/jdk1.7.0_67
运行MapReduce程序,验证
我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。
1、 准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop
2、 运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoopstandalone]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /opt/data/wc.input output2
这里可以看到job ID中有local字样,说明是运行在本地模式下的。
3、 查看输出文件
本地模式下,mapreduce的输出是输出到本地。
[hadoop@bigdata-senior01 hadoopstandalone]$ ll output2
total 4
-rw-r--r-- 1 hadoop hadoop 60 Jul 7 12:50 part-r-00000
-rw-r--r-- 1 hadoop hadoop 0 Jul 7 12:50 _SUCCESS
输出目录中有_SUCCESS文件说明JOB运行成功,part-r-00000是输出结果文件。
第三部分:Hadoop伪分布式模式安装
伪分布式Hadoop部署过程
1、 创建一个名字为hadoop的普通用户
[root@bigdata-senior01 ~]# useradd hadoop
[root@bigdata-senior01 ~]# passwd hadoop
2、 给hadoop用户sudo权限
[root@bigdata-senior01 ~]# vim /etc/sudoers
设置权限,学习环境可以将hadoop用户的权限设置的大一些,但是生产环境一定要注意普通用户的权限限制。
root ALL=(ALL) ALL
hadoop ALL=(root) NOPASSWD:ALL
注意:如果root用户无权修改sudoers文件,先手动为root用户添加写权限。
[root@bigdata-senior01 ~]# chmod u+w /etc/sudoers
3、 切换到hadoop用户,并在之后后的操作中尽量使用hadoop用户
[root@bigdata-senior01 ~]# su - hadoop
[hadoop@bigdata-senior01 ~]$
4、 创建存放hadoop文件的目录
[hadoop@bigdata-senior01 ~]$ sudo mkdir /opt/modules
5、 将hadoop文件夹的所有者指定为hadoop用户
[hadoop@bigdata-senior01 ~]# sudo chown -R hadoop:hadoop /opt/modules
如果存放hadoop的目录的所有者不是hadoop,之后hadoop运行中可能会有权限问题,那么就将所有者改为hadoop。
解压Hadoop目录文件
1、 从hadoop官网下载hadoop-2.5.0.tar.gz到/opt/modules目录下。
2、 解压hadoop-2.5.0.tar.gz
[hadoop@bigdata-senior01 ~]# cd /opt/modules
[hadoop@bigdata-senior01 hadoop]# tar -zxvf hadoop-2.5.0.tar.gz
配置Hadoop
1、 配置Hadoop环境变量
[hadoop@bigdata-senior01 hadoop]# vim /etc/profile
追加配置:
export HADOOP_HOME="/opt/modules/hadoop-2.5.0"
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
执行:source /etc/profile 使得配置生效
验证HADOOP_HOME参数:
[hadoop@bigdata-senior01 /]$ echo $HADOOP_HOME
/opt/modules/hadoop-2.5.0
2、 配置 hadoop-env.sh、mapred-env.sh、yarn-env.sh文件的JAVA_HOME参数,如系统已经配置JAVA_HOME参数,且文件中已配置export JAVA_HOME=${JAVA_HOME},则不需关注。
[hadoop@bigdata-senior01 ~]$ sudo vim ${HADOOP_HOME}/etc/hadoop/hadoop-env.sh
修改JAVA_HOME参数为:
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
3、 配置core-site.xml
[hadoop@bigdata-senior01 ~]sudo vim {HADOOP_HOME}/etc/hadoop/core-site.xml
(1) fs.defaultFS参数配置的是HDFS的地址。
<property>
<name>fs.defaultFS</name>
<value>hdfs://bigdata-senior01.chybinmy.com:8020</value>
</property>
(2) hadoop.tmp.dir配置的是Hadoop临时目录,比如HDFS的NameNode数据默认都存放这个目录下。默认的hadoop.tmp.dir是/tmp/hadoop-${user.name},此时有个问题就是NameNode会将HDFS的元数据存储在这个/tmp目录下,如果操作系统重启了,系统会清空/tmp目录下的东西,导致NameNode元数据丢失,是个非常严重的问题,所有我们应该修改这个路径。
创建临时目录,并将临时目录的所有者修改为hadoop:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo mkdir -p /opt/data/tmp
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo chown –R hadoop:hadoop /opt/data/tmp
修改hadoop.tmp.dir
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/data/tmp</value>
</property>
配置、格式化、启动HDFS
1、 配置hdfs-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim ${HADOOP_HOME}/etc/hadoop/hdfs-site.xml
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
dfs.replication配置的是HDFS存储时的备份数量,因为这里是伪分布式环境只有一个节点,所以这里设置为1。
2、 格式化HDFS
[hadoop@bigdata-senior01 ~]$ hdfs namenode –format
格式化是对HDFS这个分布式文件系统中的DataNode进行分块,数据是分块存储在不同的DataNode中的,而关于所有分块后的初始元数据的具体存储信息在NameNode中记录。
格式化后,查看core-site.xml里hadoop.tmp.dir(本例是/opt/data目录)指定的目录下是否有了dfs目录,如果有,说明格式化成功。
查看NameNode格式化后的目录。
[hadoop@bigdata-senior01 ~]$ ll /opt/data/tmp/dfs/name/current
fsimage是NameNode元数据在内存满了后,持久化保存到的文件。
fsimage*.md5 是校验文件,用于校验fsimage的完整性。
seen_txid 是hadoop的版本
vession文件里保存:namespaceID、clusterID等。
3、 启动NameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start namenode
启动输出
starting namenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-namenode-bigdata-senior01.chybinmy.com.out
4、 启动DataNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start datanode
启动输出
starting datanode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-datanode-bigdata-senior01.chybinmy.com.out
5、 启动SecondaryNameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start secondarynamenode
启动显示
starting secondarynamenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-secondarynamenode-bigdata-senior01.chybinmy.com.out
6、 JPS命令查看是否已经启动成功,有结果就是启动成功了。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps
3034 NameNode
3233 Jps
3193 SecondaryNameNode
3110 DataNode
enter image description here
7、 HDFS上测试创建目录、上传、下载文件
HDFS上创建目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -mkdir /demo1
上传本地文件到HDFS上
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -put {HADOOP_HOME}/etc/hadoop/core-site.xml /demo1
读取HDFS上的文件内容,如果能读取到文件内容,表明上传成功!
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -cat /demo1/core-site.xml
从HDFS上下载文件到本地
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -get /demo1/core-site.xml
配置、启动YARN
1、 配置mapred-site.xml
默认没有mapred-site.xml文件,但是有个mapred-site.xml.template配置模板文件。复制模板生成mapred-site.xml。
[hadoop@bigdata-senior01 hadoop-2.5.0]# cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
添加配置如下:
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
指定mapreduce运行在yarn框架上。
2、 配置yarn-site.xml
添加配置如下:
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>bigdata-senior01.chybinmy.com</value>
</property>
yarn.nodemanager.aux-services配置了yarn的默认混洗方式,选择为mapreduce的默认混洗算法。
yarn.resourcemanager.hostname指定了Resourcemanager运行在哪个节点上。
如不指定hostname,使用ip地址也可以。
<!-->如不指定hostname,使用ip地址也可以。<-->
<property>
<name>yarn.resourcemanager.address</name>
<value>127.0.0.1:8032</value>
</property>
3、 启动Resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start resourcemanager
4、 启动nodemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start nodemanager
5、 查看是否启动成功
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps
3034 NameNode
4439 NodeManager
4197 ResourceManager
4543 Jps
3193 SecondaryNameNode
3110 DataNode
可以看到ResourceManager、NodeManager已经启动成功了。
6、 YARN的Web页面
YARN的Web客户端端口号是8088,通过http://192.168.x.x:8088/可以查看。
运行MapReduce Job
在Hadoop的share目录里,自带了一些jar包,里面带有一些mapreduce实例小例子,位置在share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar,可以运行这些例子体验刚搭建好的Hadoop平台,我们这里来运行最经典的WordCount实例。
1、 创建测试用的Input文件
创建输入目录:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir -p /wordcountdemo/input
创建原始文件:
在本地/opt/data目录创建一个文件wc.input,有内容即可,主要是英文单词,程序用来统计计算。
将wc.input文件上传到HDFS的/wordcountdemo/input目录中:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /wordcountdemo/input
2、 运行WordCount MapReduce Job
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-
2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output
3、 查看输出结果目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /wordcountdemo/output
-rw-r--r-- 1 hadoop supergroup 0 2016-07-05 05:12 /wordcountdemo/output/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 60 2016-07-05 05:12 /wordcountdemo/output/part-r-00000
output目录中有两个文件,_SUCCESS文件是空文件,有这个文件说明Job执行成功。
part-r-00000文件是结果文件,其中-r-说明这个文件是Reduce阶段产生的结果,mapreduce程序执行时,可以没有reduce阶段,但是肯定会有map阶段,如果没有reduce阶段这个地方有是-m-。
一个reduce会产生一个part-r-开头的文件。
查看输出文件内容,为统计的单词频次,结果是按照键值排好序的。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -cat /wordcountdemo/output/part-r-00000
停止Hadoop
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop namenode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop datanode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop nodemanager
Hadoop各个功能模块的理解
1、 HDFS模块
HDFS负责大数据的存储,通过将大文件分块后进行分布式存储方式,突破了服务器硬盘大小的限制,解决了单台机器无法存储大文件的问题,HDFS是个相对独立的模块,可以为YARN提供服务,也可以为HBase等其他模块提供服务。
2、 YARN模块
YARN是一个通用的资源协同和任务调度框架,是为了解决Hadoop1.x中MapReduce里NameNode负载太大和其他问题而创建的一个框架。
YARN是个通用框架,不止可以运行MapReduce,还可以运行Spark、Storm等其他计算框架。
3、 MapReduce模块
MapReduce是一个计算框架,它给出了一种数据处理的方式,即通过Map阶段、Reduce阶段来分布式地流式处理数据。它只适用于大数据的离线处理,对实时性要求很高的应用不适用。
开启历史服务
历史服务介绍
Hadoop开启历史服务可以在web页面上查看Yarn上执行job情况的详细信息。可以通过历史服务器查看已经运行完的Mapreduce作业记录,比如用了多少个Map、用了多少个Reduce、作业提交时间、作业启动时间、作业完成时间等信息。
开启历史服务
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh start historyserver
开启后,可以通过Web页面查看历史服务器:
http://192.168.x.x:19888/
历史服务器的Web端口默认是19888,可以查看Web界面。
Web查看job执行历史
1、 运行一个mapreduce任务
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-
2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output1
2、 job执行中
3、 查看job历史
但是在某一个Job任务页面的最下面,Map和Reduce个数的链接上,点击进入Map的详细信息页面,再查看某一个Map或者Reduce的详细日志是看不到的,是因为没有开启日志聚集服务。
开启日志聚集
4、 日志聚集介绍
MapReduce是在各个机器上运行的,在运行过程中产生的日志存在于各个机器上,为了能够统一查看各个机器的运行日志,将日志集中存放在HDFS上,这个过程就是日志聚集。
5、 开启日志聚集
Hadoop默认是不启用日志聚集的。在yarn-site.xml文件里配置启用日志聚集。
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>106800</value>
</property>
yarn.log-aggregation-enable:是否启用日志聚集功能。
yarn.log-aggregation.retain-seconds:设置日志保留时间,单位是秒。
将配置文件分发到其他节点:
[hadoop@bigdata-senior01 hadoop]$ scp /opt/modules/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior02.chybinmy.com:/opt/modules/hadoop-2.5.0/etc/hadoop/
[hadoop@bigdata-senior01 hadoop]$ scp /opt/modules/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior03.chybinmy.com:/opt/modules/hadoop-2.5.0/etc/hadoop/
重启Yarn进程:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/stop-yarn.sh
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/start-yarn.sh
重启HistoryServer进程:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh stop historyserver
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh start historyserver
6、 测试日志聚集
运行一个demo MapReduce,使之产生日志:
bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input /output1
查看日志:
运行Job后,就可以在历史服务器Web页面查看各个Map和Reduce的日志了。
第四部分:完全分布式安装
暂略,还没有具体操作,直接参考原链接
第五部分:Hadoop HA安装
暂略,还没有具体操作,直接参考原链接
参考链接:
https://blog.youkuaiyun.com/LYHVOYAGE/article/details/54411836
https://blog.youkuaiyun.com/hliq5399/article/details/78193113