
论文阅读
文章平均质量分 77
ICCV、ECCV、CVPR等会议论文阅读
Liaojiajia-2020
CVLAB、Object Detection、Deep Learning
展开
-
CVPR2022 | 论文阅读—Unknown-Aware Object Detection: Learning What You Don’t Know from Videos in the Wild
Unknown-Aware Object Detection: Learning What You Don’t Know from Videos in the Wild1. Motivation2. Overview of the object detection framework2.1 Spatial-Temporal Unknown Distillation2.1.1 Spatial unknown distillation2.1.2 Temporal unknown distillation2.1.原创 2022-03-19 11:00:00 · 2101 阅读 · 0 评论 -
CVPR2021 | 论文阅读——UP-DETR: Unsupervised Pre-training for Object Detection with Transformers(PPT)
论文链接:https://arxiv.org/abs/2011.09094开源代码:https://github.com/dddzg/up-detrPPT参考链接:https://www.bilibili.com/video/BV1o54y187vG?p=4&t=93原创 2021-06-16 16:35:17 · 2066 阅读 · 0 评论 -
2021CVPR | 2D目标检测
2021 CVPR 2D目标检测1. You Only Look One-level Featurepaper: https://arxiv.org/abs/2103.09460code: https://github.com/megvii-model/YOLOF描述:在单阶段目标检测方面一次突破性的创新,它针对单阶段目标检测中的FPN(特征金字塔)进行了深入的分析并得出:FPN最重要的成分是分而治之的处理思路缓解了优化难问题。针对FPN的多尺度特征、分而治之思想分别提出了Dilated编码器提升特原创 2021-03-23 10:03:01 · 2949 阅读 · 0 评论 -
ICPR 2020 | 论文阅读 ——SyNet: An Ensemble Network for Object Detection in UAV Images
SyNet1. Motivation2. Method2.1. Object detecion论文链接:开源代码:https://github.com/mertalbaba/SyNet1. Motivation无人机航拍图像与自然图像的拍摄方式不同,导致了以下三个问题:缺乏大目标方差的大型无人机图像数据集;无人机航拍图像有较大的尺度方差和方向变化;地面和空中图像在纹理和形状特征上存在差异。目前已发展的单阶段和多阶段检测器各有优缺点,将每种解决方案的优势结合起来可以达到更强的检测效果原创 2021-02-05 20:38:46 · 1325 阅读 · 1 评论 -
CVPR2020|论文阅读——SEAM:Self-supervised Equivariant Attention Mechanism
SEAMSelf-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation 论文阅读分享PPT原创 2020-12-04 13:29:27 · 1016 阅读 · 1 评论 -
论文阅读——Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
Sparse R-CNNSparse RCNN论文阅读分享PPT原创 2020-12-04 13:19:37 · 829 阅读 · 3 评论 -
论文阅读——PolarDet: A Fast, More Precise Detector for Rotated Target in Aerial Images
PolarDet1 Introduction2 Approach3 Experiments4 Conclusion论文地址:https://arxiv.org/pdf/2010.08720.pdf1 Introduction2 Approach3 Experiments4 Conclusion原创 2020-10-27 14:05:17 · 1812 阅读 · 2 评论 -
ECCV2020 | 论文阅读——HoughNet: Integrating near and long-range evidence for bottom-up object detection
HoughNet1 Introduction2 Approach3 Experiments4 Conclusion论文地址:https://arxiv.org/abs/2007.02355开源代码:https://github.com/nerminsamet/houghnet其他解读:https://mp.weixin.qq.com/s/d-Kz-8KqcB9Afyzva56Ijg本文亮点:1 Introduction2 Approach3 Experiments4 Conclusio原创 2020-08-12 17:31:31 · 1775 阅读 · 4 评论 -
ECCV2020 | 论文阅读——CPNDet:Corner Proposal Network for Anchor-free, Two-stage Object Detection
CPNDet1 Introduction论文地址:https://arxiv.org/abs/2007.13816开源代码:https://github.com/Duankaiwen/CPNDet本文亮点:1.1 Introduction原创 2020-08-06 19:22:35 · 2693 阅读 · 0 评论 -
ECCV2020 | 论文阅读——BorderDet: Border Feature for Dense Object Detection
BorderDet 用边界特征做检测Abstract1 Introduction2 Related Work3 The Proposed Approach4 Experiments5 Conclusion论文地址:https://arxiv.org/abs/2007.11056开源代码:https://github.com/Megvii-BaseDetection/BorderDet作者解读:https://zhuanlan.zhihu.com/p/163044323本文亮点:Abstract原创 2020-07-30 23:27:36 · 2837 阅读 · 3 评论 -
CVPR2020 | 论文阅读——Multiple Anchor Learning for Visual Object Detection
@[TOC](论文地址:https://arxiv.org/abs/1912.02252开源代码: https://github.com/KevinKecc/MAL本文亮点:Abstract1 Introduction2 Related Work3 Method3.1 Network Architecture3.2 Feature Selection Module3.3 Dynamic Refinement Head3.4 SKU110K-R Dataset4 Experiment原创 2020-07-22 09:46:29 · 2231 阅读 · 0 评论 -
ECCV2020 | 论文阅读——Arbitrary-Oriented Object Detection with Circular Smooth Label
@[TOC](原创 2020-07-18 17:16:12 · 4601 阅读 · 1 评论 -
CVPR2020 | 论文阅读——Dynamic Refinement Network for Oriented and Densely Packed Object Detection
DRNAbstract1 Introduction2 Related Work3 Method3.1 Network Architecture3.2 Feature Selection Module3.3 Dynamic Refinement Head3.4 SKU110K-R Dataset4 Experiments4.1 Experimental Results4.2 Ablation Study5 Conclusion论文地址:https://arxiv.org/pdf/2005.09973.pd原创 2020-07-06 20:00:03 · 7029 阅读 · 6 评论 -
论文翻译 | SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising
SCRDet++PrefaceAbstract1 INTRODUCTION2 RELATED WORK2.1 Horizontal Region Object Detection2.2 Arbitrary-Oriented Object Detection2.3 Image Denoising2.4 Small Object Detection3 THE PROPOSED METHOD3.1 Approach Overview3.2 Instance-level Feature Map Denoising3翻译 2020-05-11 08:57:33 · 4760 阅读 · 5 评论 -
CVPR2020 | EfficientDet: Scalable and Efficient Object Detection 思维导图 + PPT
EfficientDet论文:https://arxiv.org/abs/1911.09070(非官方)开源代码:(1) Pytorch版:https://github.com/toandaominh1997/EfficientDet.Pytorch(2) Keras&&TensorFlow版:https://github.com/xuannianz/EfficientDet...原创 2020-05-04 21:36:05 · 900 阅读 · 0 评论 -
ICML 2019 | EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 思维导图
EfficientNet 论文:https://arxiv.org/abs/1905.11946EfficientNet 开源代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet第三方实现的PyTorch代码:https://github.com/lukemelas/EfficientNet-...原创 2020-04-28 20:16:48 · 354 阅读 · 0 评论 -
CVPR2020 | 论文阅读——CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
CentripetalNet前言1、Background Introduction2、Network Architecture3、Experiments4、Conclusions5、References前言论文地址:https://arxiv.org/pdf/2003.09119.pdf开源代码:https://github.com/KiveeDong/CentripetalNet简介:...原创 2020-04-16 17:20:42 · 2554 阅读 · 3 评论 -
ICCV2019 | 论文阅读——Clustered Object Detection in Aerial Images
目标检测 | Clustered Object Detection in Aerial Images论文阅读一、背景介绍二、网络结构2.1 总体框架2.2 Cluster Region Extraction2.2.1 CPNet2.2.2 ICM2.3 Fine Detection on Cluster Chip2.3.1 ScaleNet2.3.2 PP module2.4 Fusion O...原创 2019-12-04 13:46:27 · 4011 阅读 · 25 评论 -
ICCV2019 |论文阅读——SCRDet:Towards More Robust Detection for Small, Cluttered and Rotated Objects
ICCV2019|论文阅读 SCRDet:Towards More Robust Detection for Small, Cluttered and Rotated Objects前言论文地址:https://arxiv.org/abs/1811.07126开源代码:https://github.com/DetectionTeamUCAS一、背景介绍目标检测计算机视觉的基石。尽管现在...原创 2019-11-16 16:37:36 · 6175 阅读 · 11 评论