本文转载自:http://blog.youkuaiyun.com/lifeitengup/article/details/10951655
#翻译#了下 余凯老师的 心法
以前的一篇博文:二分类SVM方法Matlab实现

前几日实现了下,虽然说是Linear-SVM,但是只要可以有映射函数也可以做kernel-svm



- function [optW cost]= svm5step(X, y, lambda)
- %% Linear-SVM Minimize(Cost + lambda*Penalty)
- % X: N×dim
- % y: {-1,+1}
- % lambda: coefficient for Penalty part
- % By LiFeiteng Email:lifeiteng0422@gmail.com
-
- [N dim] = size(X);
- w = rand(dim+1,1);
- X = [ones(N,1) X]; % x = [1 x]
-
- % minFunc From: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
- options.Method = 'lbfgs';
- options.maxIter = 100;
- options.display = 'on';
- [optW, cost] = minFunc( @(p) svmCost(p, X, y, lambda), w, options);
-
- end
-
- function [cost grad] = svmCost(w, X, y, lambda)
- % cost = HingeLoss^2 + lambda*||w||^2
- % 1 2 3 4 5 step
- yp = X*w;
- idx = find(yp.*y<1);
- err = yp(idx)-y(idx);
- cost = err'*err + lambda*w'*w;
- grad = 2*X(idx,:)'*err + 2*lambda*w;
- end
测试用例:
- clear
- close all
- x0 = [1 4]';
- x1 = [4 1]';
-
- X0 = [];
- X1 = [];
- for i = 1:40
- X0 = [X0 normrnd(x0, 1)];
- X1 = [X1 normrnd(x1, 1)];
- end
- X = [X0 X1]';
- y = [-ones(size(X0,2),1); ones(size(X1,2),1)];
- save data X0 X1 X y
-
- plot(X0(1,:),X0(2,:), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
- hold on
- plot(X1(1,:),X1(2,:), 'k+','LineWidth', 2, 'MarkerSize', 7);
-
- lambda = 0.01;
- w = svm5step(X, y, lambda)
- k = -w(2)/w(3); b = -w(1)/w(3);
- h = refline(k,b); %已知斜率w 截距b 画直线
- set(h, 'Color', 'r')
-
- b = -(w(1)+1)/w(3);
- h = refline(k,b); %已知斜率w 截距b 画直线
- b = -(w(1)-1)/w(3);
- h = refline(k,b); %已知斜率w 截距b 画直线
- title(['5 steps Linear-SVM: \lambda = ' num2str(lambda)] )