Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
void visitSubTree(TreeNode *root, bool isLeftTree, vector<int> &curVector)
{
if (!root)
return;
if (isLeftTree)
{
visitSubTree(root->left, isLeftTree, curVector);
curVector.push_back(root->val);
visitSubTree(root->right, isLeftTree, curVector);
}
else
{
visitSubTree(root->right, isLeftTree, curVector);
curVector.push_back(root->val);
visitSubTree(root->left, isLeftTree, curVector);
}
}
public:
bool isSymmetric(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (!root)
return true;
vector<int> leftVector;
vector<int> rightVector;
visitSubTree(root->left, true, leftVector);
visitSubTree(root->right, false, rightVector);
int leftSize = leftVector.size();
int rightSize = rightVector.size();
if (leftSize != rightSize)
return false;
int idx = 0;
while (idx < leftSize)
{
if (leftVector[idx] == rightVector[idx])
{
idx++;
}
else
{
return false;
}
}
return true;
}
};
另外一种解法,转自http://blog.youkuaiyun.com/xudli/article/details/8427025
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isSymRec(TreeNode *left, TreeNode * right){
if(left == NULL && right==NULL){
return true;
} else if(left == NULL || right == NULL) {
return false;
}
return ( left->val == right->val && isSymRec( left->left, right->right) &&
isSymRec( left->right, right->left) );
//both are not NULL.
}
bool isSymmetric(TreeNode *root) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(root == NULL) return true;
return isSymRec( root->left, root->right);
}
};