第十七周:( Sicily1083) Networking(c++)

本文介绍使用Prim算法解决最小生成树问题的具体实现方法。通过详细的C++代码示例,展示了如何构造邻接矩阵,初始化节点状态,并逐步迭代选择代价最小的边来构建最小生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接:
http://soj.sysu.edu.cn/1083

思路:最小生成树。Prim算法求解。

代码:

//顶点编号为1-NumPoints
//数据输入和初始化应该根据具体情况而定
//Edges[Node2][Node1]=Edges[Node1][Node2]
#include <iostream>
using namespace std;
#define INF 2000000000

int Edges[105][105];
int Post[55];
bool Visited[55];
int NumPoints,NumRoads;

int find_min_node(){
    int res=1,min=Post[1];
    for(int i=1;i<=NumPoints;i++)
        if(Post[i]<min){
            min=Post[i];
            res=i;
        }
    return res;
}

int Prim(){
    int CostMinTree=0;
    Visited[1]=true;
    int add_node=1;
    for(int i=2;i<=NumPoints;i++){
        for(int j=1;j<=NumPoints;j++)
            if((!Visited[j])&&(Edges[add_node][j]<Post[j]))
                Post[j]=Edges[add_node][j];
        add_node=find_min_node();
        CostMinTree+=Post[add_node];
        Visited[add_node]=true;
        Post[add_node]=INF;
    }
    return CostMinTree;
}

int main(){
    while(cin>>NumPoints){
        if(NumPoints==0)
            break;
        cin>>NumRoads;
        for(int i=1;i<=NumPoints;i++){
            Visited[i]=false;
            Post[i]=INF;
            for(int j=1;j<=NumPoints;j++)
                Edges[i][j]=INF;
        }
        for(int i=1;i<=NumRoads;i++){
            int Node1,Node2,edge;
            cin>>Node1>>Node2>>edge;
            if(edge<Edges[Node1][Node2]){
                Edges[Node1][Node2]=edge;
                Edges[Node2][Node1]=edge;
            }
        }
        cout<<Prim()<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值