Visual comfort assessment for stereoscopic images based on sparse coding with multi-scale dictionaries
题目:基于多尺度稀疏编码字典的立体图像舒适度评价
方法步骤:1.建立舒适度级别的多尺度字典2.估计测试样本属于每个级别的概率3.寻找概率对应的权重系数,求最后的舒适度分数
传统方法的缺点:(传统方法是指,提取特征,训练回归方程),1.视差特征太简单,不足以描述复杂的人体感知2.很难获得充足的训练样本3.缺少直观明确的生物学解释
特征提取:视差特征:前%p视差的均值,后%p视差均值,视差对比度,视差离散度,视差偏度。神经活动:神经活动特征
整体框图:

公式:



数据库:IVY LAB和NBU
实验:1.在两个数据库的Plcc,Srocc,Rmse
2.交叉验证。
阅读笔记:Visual comfort assessment for stereoscopic images based on sparse coding with multi-scale dict
最新推荐文章于 2026-01-07 11:06:30 发布
本文提出一种基于多尺度稀疏编码字典的立体图像舒适度评价方法,通过估计测试样本在不同舒适度级别的概率,结合权重系数计算最终的舒适度分数。该方法克服了传统方法中视差特征过于简单、训练样本不足及缺乏生物学解释的问题。
288

被折叠的 条评论
为什么被折叠?



