题目:双目融合网络:立体舒适度评估的深度学习
深度网络:BFN:双目融合深度网络,学习双目特征;DRN:视差正则化网络,提升预测结果;
整体框图:
训练:

测试:
CNN的主要组成:卷积层,下采样层,激活层,全连接层;
数据库:MPI-Sintel和IEEE-SA
实验过程:用MPI训练DRN,获取初始参数,利用该参数在IEEE上训练。将DRN和BFN端到端的连接,十则交叉验证。
实验结果:
1.

2.
3.重要性评估

4.是否用DRN的差别:
阅读笔记:Binocular Fusion Net: Deep Learning Visual Comfort Assessment for Stereoscopic 3D
最新推荐文章于 2026-01-07 12:25:12 发布

最低0.47元/天 解锁文章
9281





