参考文章https://blog.youkuaiyun.com/kwang0131/article/details/51085734
随机找出一个数(通常就拿数组第一个数据就行),把它插入一个位置,使得它左边的数都比它小,它右边的数据都比它大,这样就将一个数组分成了两个子数组,然后再按照同样的方法把子数组再分成更小的子数组,直到不能分解为止。 它也是分治思想的一个经典实验(归并排序也是)
3.快速与归并排序的区别:
(1)归并排序将数组分成两个子数组,然后分别排序,并将有序的子数组归并以将整个数组排序;
快速排序将数组排序的方式是当两个子数组都有序时整个数组也就自然有序了
(2)归并排序的递归调用发生在处理整个数组之前
快速排序的递归调用发生在处理整个数组之后
方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即j=10),指向数字8。



现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下。






public class QuickSort{
public static void quickSort(Comparable[] a){
//StdRandom.shuffle(a);//将数组a顺序打乱,消除对输入的依赖,这是《算法第四版》作者写好的静态函数,
quickSort(a, 0, a.length-1);
}
public static void quickSort(Comparable[] a, int lo, int hi){
if(hi <= lo) //跳出递归的条件,相当于不能再分解了
return;
int j = partition(a, lo, hi); //切分(将a[lo]插入到数组中合适的位置:左边比他小,右边比它大,这样就将数组切分成两部分)
quickSort(a, lo, j-1); //将左半部分a[lo...j-1]排序
quickSort(a, j+1, hi); //将右半部分a[j+1...hi]排序
}
private static int partition(Comparable[] a, int lo, int hi){
//将数组切分为a[lo...i-1]、a[i] 和a[i+1...hi];
int i = lo, j = hi + 1; //左右扫描的指针,j=hi+1,很大的程度上是为了下面写--j,
Comparable v = a[lo]; //把要用来切分的元素保留
while(true){ // 扫描左右检查扫描是否结束并交换元素
while(less(a[++i], v))//两种条件会跳出while循环,直到在左侧找到比v大的,或i指针已经走到头了(i==hi),++i的原因:v是从lo开始的,满足less()
if(i == hi) break;//不过这两个判断越界的测试条件是多余的,可以去掉,因为本身i,j就是从两端走过去的,不等走到头就
while(less(v,a[--j]));
if(j == lo) break;
if(i >= j) break; //i和j碰上了,那就跳出整个循环,
exch(a,i,j); //如果上两个while都跳出,说明i,j停在了a[i]>v ,a[j]<v处,所以将二者交换就可以了,然后i和j继续向中间靠拢
}
exch(a, lo, j); //将 v = a[j]放入正确的位置,当两个指针相遇时,交换a[lo]和a[j],这样切分的值就留在a[j]中了,初始的a[lo]找到了正确位置
return j; //a[lo...j-1] <= a[j] <= a[j+1...hi]达成
}
}
6.注意:
(1)处理切分元素值有重复的情况,所以左侧扫描最好是遇到 >= 切分元素值的元素时停下,右侧扫描遇到 <= 切分元素值的元素时停下,这样能比秒算法运行时间平方级别
(2)终止递归:一定保证终止递归的条件,否则就递归陷入死循环了
7.算法改进
7.1 切换到插入排序
和大多数递归排序算法一样,改进快速排序性能的一个简单办法是基于以下两点:
(1)对于小数组,快速排序比插入排序慢
(2)因为递归,快速排序的sort()方法在小数组中也会调用自己
因此,在排序小数组应该切换到插入排序,简单的改动算法中的一句就可:将sort()中的语句
if(hi <= lo) return;
改成: if(hi <= lo + M){Insertion.sort(a, lo, hi); return; }
这样就可以在小数组时转换成插入排序
转换参数M的最佳值是和系统相关的,但是5~15 之间的惹你值在大多数情况下都能令人满意
7.2 三取样切分
改进快速排序性能的第二个办法就是使用子数组的一小部分元素的中位数来切分数组,这样做得到的切分效果更好,但是代价是要计算中位数。人们发现将取样大小设为3并用大小居中的元素气氛效果最好,我们还可以将取样元素放在数组末尾作为“哨兵”来去掉partition()中的数组边界测试。
7.3 熵最有的排序
实际应用中经常会出现含有大量重复元素的数组,例如我们可能需要将大量人员资料按照生日排序,或是按照性别区分开来,在这种情况下,我们事先的快速排序还有很大的改进空间。
简单的想法是将数组分为三部分,分别对应小于,等于和大于切分元素的数组元素,这也是荷兰国旗引发的易到景点编程练习,因为这就好像用三种可能的主键值将数组排序一样,这三种主键值对应这荷兰国旗上的三种颜色。
三向切分的快速排序算法思想如下:
它从左到右遍历数组一次,维护一个指针lt使a[lo...lt-1]中的元素都小于v,一个指针gt使得a[gt+1...hi]中的元素都大于v,一个指针i使得a[lt...i-1]中的元素都等于v,a[i...gt]中的元素都还未确定。
(1)a[i] < v 将a[lt]和a[i]交换,将lt和i加一
(2)a[i] > v 将a[gt]和a[i]交换,将gt减一
(3)a[i] = v 将i加一
lt++的原因:lt相当于v的当前位置,a[lt] =v,所以只有当a[lt] >a[i]时才会交换,交换后v之前就多了一个值,所以lt++
i++的原因:有两种情况i++,第一种a[i] < v,这样必然会将a[i] 这个值换到v之前,然而一直在动的那个指针就是i,所以i要向前走,比较下一个a[i] 与v的大小,如果相等自动加一
gt--的原因:交换a[gt]和a[i]的原因是,a[i]>v了,那么肯定a[i]的值满足了在v后面,索性把这个大于v的就放最后面,肯定满足v后面的都比它大,所以把a[gt]拿过来,此时还不能 保 证a[gt]的大小,所以放到i这个位置上,在下一轮比较a[i].compareTo(v),就能确定拿过来的a[gt]到底比v大还是小了,但是已经确定由a[i]和a[gt]交换后的a[gt]肯 定比 v 大,所以没有必要下一轮交换时再交换到前面去,所以gt减一
具体实现代码如下 所以可以看出,当数组中的元素存在大量的重复数据的时候,三向切分的快速排序效果更好
public class Quick3Way{
private static void sort(Comparable[] a, int lo, int hi){
if(hi <= lo) return ;
int lt = lo, i = lo+1, gt = hi;
Comparable v = a[lo];
while (i <= gt){
int cmp = a[i].compareTo(v);
if (cmp < 0){ exch(a, lt++, i++);
}else if(cmp > 0){ exch(a, i, gt--);
}else{
i++;
}
}// 现在a[lo...lt-1] < v = a[lt...gt] < a[gt+1...hi]成立
sort(a, lo, lt-1);
sort(a, gt+1, hi);
}
}