【python3】leetcode 825. Friends Of Appropriate Ages (Medium)

本文深入探讨了适龄交友算法的实现,通过分析年龄限制条件,提出了一种高效计算总交友请求数量的方法,避免了传统遍历方式的时间复杂度过高的问题。

825. Friends Of Appropriate Ages (Medium)

Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ith person. 

Person A will NOT friend request person B (B != A) if any of the following conditions are true:

  • age[B] <= 0.5 * age[A] + 7
  • age[B] > age[A]
  • age[B] > 100 && age[A] < 100

Otherwise, A will friend request B.

Note that if A requests B, B does not necessarily request A.  Also, people will not friend request themselves.

How many total friend requests are made?

Example 1:

Input: [16,16]
Output: 2
Explanation: 2 people friend request each other.

Example 2:

Input: [16,17,18]
Output: 2
Explanation: Friend requests are made 17 -> 16, 18 -> 17.

Example 3:

Input: [20,30,100,110,120]
Output: 
Explanation: Friend requests are made 110 -> 100, 120 -> 110, 120 -> 100.

这道题如果遍历a,b,时间复杂度是O(n2),妥妥超时

但是由于年龄《120,所以遍历年龄的count,

因为一对a->b满足条件的话,所有a年龄的人可以对所有b年龄的人发起朋友请求,总共数量count(a) * count(b)

而如果ab年龄相同,由于不能对自己发起朋友请求,所以总共数量count(a) * ( count(a) - 1)

class Solution(object):
    def numFriendRequests(self, ages):
        """
        :type ages: List[int]
        :rtype: int
        """
        count = collections.Counter(ages)
        num = 0
        ageset = list(set(ages))
        for i in range(len(ageset)):
            for j in range(len(ageset)):
                if not (ageset[i] <= 0.5*ageset[j] + 7 or (ageset[i] > ageset[j]) or (ageset[i] > 100 and ageset[j] < 100)):
                    if ageset[i] == ageset[j]:num += count[ageset[i]]*(count[ageset[i]]-1)
                    else:num += count[ageset[i]]*count[ageset[j]]
        return num

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值