OpenCV与Python之图像的读入与显示以及利用Numpy的图像转换

本文详细介绍了使用OpenCV和matplotlib库进行图像处理和显示的方法,包括图像读取、颜色空间转换、图像显示及镜像操作。并通过具体示例,解析了numpy数组在图像处理中的应用,如像素操作和矩阵翻转。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:读入图像,显示图像与保存图像

 

import cv2

img=cv2.imread('lena.jpg',cv2.IMREAD_COLOR)
cv2.namedWindow('lena',cv2.WINDOW_AUTOSIZE)
cv2.imshow('lena',img)
k=cv2.waitKey(0)

if k==27:
    cv2.destroyAllWindows()
    plt.close()
elif k==ord('s'):
    cv2.imwrite('lenagray.png',img)
    cv2.destroyAllWindows()

 

 

import numpy as np
import cv2
from matplotlib import pyplot as plt

img=cv2.imread('lena.jpg',cv2.IMREAD_COLOR)

#method1
b,g,r=cv2.split(img)
img2=cv2.merge([r,g,b])
plt.imshow(img2)
plt.show()

#method2
img3=img[:,:,::-1]
plt.imshow(img3)
plt.show()

#method3
img4=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img4)
plt.show()

复制代码

效果:

 

3:关于numpy的矩阵的翻转(对于上述的方法2的说明)


 

上述方法2正是利用了numpy对数组的翻转。举例说明。

我仿照图片的像素格式,建立一个2行3列的,每个像素有包含RGB3个元素。

分别进行图中所示的4种运算。

执行a[:-1],移除了后面的一行。对于一维数组,后面的一行其实就是最后一个元素,所以这个运算就是移除最后一个元素。

执行a[::-1],上下两行交换了。同样的看成一维数组的话,一行就是一个元素,这个运算其实就是对一个一维数组内的元素前后对调。多维数组可以理解成对对第一个方括号内的每一个元素前后对调。

执行a[:,::-1],每一行中的元素前后交换了。简单理解就是对第二层反括号内的元素前后对调。

执行a[:,:,::-1],这样就好理解了,肯定是对第三层方括号内的元素对调。这也就解释了,对于一个24位深度的图像执行这个操作的话,是对每个像素的RGB进行对调。

对于图像而言,a[::-1],a[:,::-1],a[:,:,::-1]上述的三种方法分别是X轴的镜像,Y轴的镜像,BGR转换为RGB的操作。

示例:

 

2:另一种显示方法

 

利用matplotlib去显示图像。

import cv2
from matplotlib import pyplot as plt
img=cv2.imread('lena.jpg',cv2.IMREAD_COLOR)
plt.imshow(img)
plt.show()

 

问题来了,为什么显示的颜色与原图不同呢?

后来网上搜索后才知道,对于opencv的像素是BGR顺序,然而matplotlib所遵循的是RGB顺序。

opencv的一个像素为:[B,G,R] ,matplotlib的一个像素为:[R,G,B]。这就是为什么本来发红的区域变得有些发蓝了。

解决方法:

解决方法有很多。

 

3 、QPixmap显示

def play_video( self ):
    # img=cv2.imread("../images/python.jpg",cv2.IMREAD_COLOR)
    # # cv2.imshow(self.videoBox,img)
    # label=QLabel()
    # self.videoBox.addWidget(label)
    # show = cv2.cvtColor(img,CAP_MODE_RGB)
    # showImage = QImage(show.data, show.shape[1], show.shape[0], show.shape[1]*3,QImage.Format_RGB888)
    # '''
    # 自适应控件大小
    # '''
    # # scaredPixmap = QPixmap.scaled(400, 400, aspectRatioMode=Qt.KeepAspectRatio)
    # label.setPixmap(QPixmap.fromImage(showImage).scaled(self.gridLayoutWidget.width(),self.gridLayoutWidget.height(),aspectRatioMode=Qt.KeepAspectRatio))

 

4、QMediaPlayer显示

player = QMediaPlayer(self.centralwidget)
# self.player.setObjectName("player")
vw=  PyQt5.QtMultimediaWidgets.QVideoWidget()
# self.videoBox.removeWidget(self.label)
self.videoBox.addWidget(vw)# 定义视频显示的widget
vw.show()
player.setVideoOutput(vw)                 # 视频播放输出的widget,就是上面定义的
player.setMedia(QMediaContent(QFileDialog.getOpenFileUrl()[0]))  # 选取视频文件
player.play()                               # 播放视频
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值