from numpy import *
import operator
from os import listdir
def classify0(inX, dataSet, labels, k): #inx 是输入的数据杭矩阵,dateset是已经知道标签的数据集,lables是该标签,k是距离最精需要比较的个数
dataSetSize = dataSet.shape[0] #获取训练数据的个数,在这里也是行数
diffMat = tile(inX, (dataSetSize,1)) - dataSet #将inx复制了datesetsize行,与训练矩阵相-
sqDiffMat = diffMat**2 #将diffmat矩阵中的每个数平方
sqDistances = sqDiffMat.sum(axis=1) #axis=1,将各自行中的数据求和,得到多行一列矩阵
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() #从小到大排序,返回的是他们的索引
classCount={} #字典,key为v哦忒喇叭了,值为出现的次数
for i in range(k): #统计前k个距离最近的数据,统计相应标签出现的频次,并返回标签频次最高的训练数据的标签
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#.get()函数当voteilable存在时,返回他的值,不存在时返回默认的0
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)#key=1,以字典的值降序排列
return sortedClassCount[0][0]#返回频次最高的标签
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip() #去除前后空格
listFromLine = line.split('\t')#以tab将数据分开送给列表listfromline
returnMat[index,:] = listFromLine[0:3]#将列表中的前3个数据送给returnmat
classLabelVector.append(int(listFromLine[-1]))#将每行的最后一列追加给标签矩阵
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet): #dateset 为多为矩阵
minVals = dataSet.min(0) #minvals是一行多列,每列的最小值组成
maxVals = dataSet.max(0) #maxvals是一行多列,每列的最大值组成
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0] #得到数据的行
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]): errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount)
def img2vector(filename):
returnVect = zeros((1,1024))#将32*32的图像矩阵转换为1*1024的杭矩阵,此处创建他的容器
fr = open(filename)
for i in range(32): #便利每一行
lineStr = fr.readline() #仅读取当前的一行
for j in range(32): #将该行中每一列的元素强制类型转换为int类型,并伏值给returnvec矩阵
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set trainingDigits这是一个路径
m = len(trainingFileList) #获取文件的各数
trainingMat = zeros((m,1024)) #每个文件代表举证中的一行
for i in range(m):
fileNameStr = trainingFileList[i] #得到文件名
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0]) #将文件命中_之前的数字作为标签lables
hwLabels.append(classNumStr) #将所有的文件名中得到的标签追加到hwlables中去
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr) #调用函数将所有文件中的内容转换为一行数据
testFileList = listdir('testDigits') #iterate through the test set得到测试序列目录下的文件名
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)#括号内依次为测试用的单行数据;上一循环中得到的多行数据矩阵;以及他的标签列,k值等于3。
print ("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount += 1.0
print ("\nthe total number of errors is: %d" % errorCount)
print ("\nthe total number of errors is: %d" % (errorCount/float(mTest)))