gn是什么?
gn 存在的意义是为了生成 ninja,如果熟悉前端开发,二者关系很像 Sass和CSS的关系.
为什么会有gn,说是有个叫even的谷歌负责构建系统的工程师在使用传统的makefile构建chrome时觉得太麻烦,不高效,所以设计了一套更简单,更高效新的构建工具gn+ninja,然后就被广泛的使用了.
gn语法和配置
gn 有大量的内置变量和库函数,熟悉这些库函数基本就知道gn能干什么,gn的官方文档很齐全.
gn 的语法简单,了解以下几点基本就能看懂gn代码.重点了解下函数的调用方式,和其他高级语言不太一样.
字符串
a = "mypath"
b = "$a/foo.cc" # b -> "mypath/foo.cc"
c = "foo${a}bar.cc" # c -> "foomypathbar.cc"
列表
a = [ "first" ]
a += [ "second" ] # [ "first", "second" ]
a += [ "third", "fourth" ] # [ "first", "second", "third", "fourth" ]
b = a + [ "fifth" ] # [ "first", "second", "third", "fourth", "fifth" ]
条件语句
if (is_linux || (is_win && target_cpu == "x86")) {
sources -= [ "something.cc" ]
}else {
...
}
循环
foreach(i, mylist) {
print(i) # Note: i is a copy of each element, not a reference to it.
}
函数调用
print("hello, world")
assert(is_win, "This should only be executed on Windows") # 如果is_win为真,就打印后面的内容
static_library("mylibrary") {
sources = [ "a.cc" ]
}
解读:
print,assert,static_library都是库函数,或者叫内置函数.static_library的调用有点奇怪,它是个函数,函数内部会使用sources这个内置变量,sources = [ "a.cc" ]相当于先传参给这个函数的内置变量,并调用这个函数.学习ng得习惯这种语法方式,被大量的使用.
模板 | Templates
gn提供了很多内置函数,使用偏傻瓜式,若构建不复杂的系统,熟悉这些内置函数,选择填空就可以交作业了,如果想高阶点,想自己定义函数怎么办? 答案是模板,模板就是自定义函数.
#定义模板, 文件路径: //tools/idl_compiler.gni, 后缀.gni 代表这是一个 gn import file
template("idl") { #自定义一个名称为 "idl"的函数
source_set(target_name) { #调用内置函数 source_set
sources = invoker.sources #invoker为内置变量,含义为调用者内容 即:[ "a", "b" ]的内容
}
}
#如何使用模板, 用import,类似 C语言的 #include
import("//tools/idl_compiler.gni")
idl("my_interfaces") { #等同于调用 idl
sources = [ "a", "b" ] #给idl传参, 参数的接收方是 invoker.sources
}
明白了模板的使用,阅读鸿蒙gn代码就不会有太大的障碍.
目标项 | Targets
目标是构建图中的一个节点。它通常表示将生成某种可执行文件或库文件。整个构建是由一个个的目标组成.
目标包含:
action: 运行脚本以生成文件
executable: 生成可执行文件
group: 生成依赖关系组
shared_library: 生成.dll或.so动态链接库
static_library: 生成.lib或.a 静态链接库
...
配置项 | Configs
记录完成目标项所需的配置信息,例如:
config("myconfig") {#创建一个标签为`myconfig`的配置项
include_dirs = [ "include/common" ]
defines = [ "ENABLE_DOOM_MELON" ]
}
executable("mything") {#生成可执行文件
configs = [ ":myconfig" ]#使用标签为`myconfig`的配置项来生成目标文件
}
gn在鸿蒙中的使用
有了以上基础铺垫,正式开始gn在openharomny中的使用.
从哪开始
在构建工具篇中已经说清楚了 hb的python部分有个工作任务是生成gn命令所需参数. gn生成ninja的命令是 gn gen ...
/home/tools/gn gen /home/openharmony/code-v1.1.1-LTS/out/hispark_aries/ipcamera_hispark_aries \
--root=/home/openharmony/code-v1.1.1-LTS \
--dotfile=/home/openharmony/code-v1.1.1-LTS/build/lite/.gn \
--script-executable=python3 \
'--args=ohos_build_type="debug" \
ohos_build_compiler_specified="clang" \
ohos_build_compiler_dir="/home/tools/llvm" \
product_path="/home/openharmony/code-v1.1.1-LTS/vendor/hisilicon/hispark_aries" \
device_path="/home/openharmony/code-v1.1.1-LTS/device/hisilicon/hispark_aries/sdk_liteos" \
ohos_kernel_type="liteos_a" \
enable_ohos_appexecfwk_feature_ability = false \
ohos_full_compile=true'
解读
root,dotfile,script-executable是gn内置的固定参数,一切从dotfile指向的文件开始.即build/lite/.gn相当于main()函数的作用,- 打开 build/lite/.gn看下内容,只有两句,先配置好内部参数再工作.
# The location of the build configuration file. #1.完成gn的配置工作
buildconfig = "//build/lite/config/BUILDCONFIG.gn"
# The source root location. #2.完成gn的编译工作
root = "//build/lite"
args为用户自定义的参数,它们将会在解析BUILD.gn,BUILDCONFIG.gn过程中被使用.
BUILDCONFIG.gn | 构建配置项
BUILDCONFIG.gn为BUILD.gn做准备,填充好编译所需的配置信息.即生成配置项
详细请查看 build/lite/config/BUILDCONFIG.gn文件全部内容,本篇只贴出部分.
import("//build/lite/ohos_var.gni")
import("${device_path}/config.gni")
....
arch = "arm"
if (ohos_kernel_type == "liteos_a") {
target_triple = "$arch-liteos"
} else if (ohos_kernel_type == "linux") {
target_triple = "$arch-linux-ohosmusl"
}
...
template("executable") { #生成可执行文件
executable(target_name) {
forward_variables_from(invoker, Variables_Executable)
if (!defined(invoker.deps)) {
deps = [ "//build/lite:prebuilts" ]
} else {
deps += [ "//build/lite:prebuilts" ]
}
if (defined(invoker.configs)) {
configs = []
configs += invoker.configs
}
}
}
set_defaults("executable") {#设置目标类型的默认值
configs = default_executable_configs
configs += [ "//build/lite/config:board_exe_ld_flags" ]
}
...
解读
${device_path}为命令行参数,本篇为home/openharmony/code-v1.1.1-LTS/device/hisilicon/hispark_aries/sdk_liteos- 查看构建-配置内容,
BUILDCONFIG主要任务就是对其中的内置变量赋值.例如:- 指定编译器 clang,
- 如何生成可执行文件的方法等
BUILD.gn | 启动构建
查看 build/lite/BUILD.gn文件,文件注解较多.
#目的是要得到项目各个模块的编译入口
group("ohos") {
deps = []
if (ohos_build_target == "") {
# Step 1: Read product configuration profile.
# 第一步:读取配置文件product_path的值来源于根目录的ohos_config.json,如下,内容由 hb set 命令生成
# {
# "root_path": "/home/openharmony",
# "board": "hispark_aries",
# "kernel": "liteos_a",
# "product": "ipcamera_hispark_aries",
# "product_path": "/home/openharmony/vendor/hisilicon/hispark_aries",
# "device_path": "/home/openharmony/device/hisilicon/hispark_aries/sdk_liteos",
# "patch_cache": null
#}
product_cfg = read_file("${product_path}/config.json", "json")
# Step 2: Loop subsystems configured by product.
# 第二步:循环处理各自子系统,config.json中子系统部分格式如下hb
#"subsystems": [
# {
# "subsystem": "aafwk",
# "components": [
# { "component": "ability", "features":[ "enable_ohos_appexecfwk_feature_ability = false" ] }
# ]
# },
# ...
# {
# "subsystem": "distributed_schedule",
# "components": [
# { "component": "system_ability_manager", "features":[] },
# { "component": "foundation", "features":[] },
# { "component": "distributed_schedule", "features":[] }
# ]
# },
# {
# "subsystem": "kernel",
# "components": [
# { "component": "liteos_a", "features":[] }
# ]
# },
#]
foreach(product_configed_subsystem, product_cfg.subsystems) {#对子系统数组遍历操作
subsystem_name = product_configed_subsystem.subsystem #读取一个子系统 aafwk,hiviewdfx,security ==
subsystem_info = {
}
# Step 3: Read OS subsystems profile.
# 第三步: 读取各个子系统的配置文件
subsystem_info =
read_file("//build/lite/components/${subsystem_name}.json", "json")
# Step 4: Loop components configured by product.
# 第四步: 循环读取子系统内各控件的配置信息
# 此处以内核为例://build/lite/components/kernel.json"
# "components": [
# {
# "component": "liteos_a", # 组件名称
# "description": "liteos-a kernel", # 组件一句话功能描述
# "optional": "false", # 组件是否为最小系统必选
# "dirs": [ # 组件源码路径
# "kernel/liteos_a"
# ],
# "targets": [ # 组件编译入口
# "//kernel/liteos_a:kernel"
# ],
# "rom": "1.98MB", # 组件ROM值
# "ram": "", # 组件RAM估值
# "output": [ # 组件编译输出
# "liteos.bin"
# ],
# "adapted_board": [ # 组件已适配的主板
# "hispark_aries",
# "hispark_taurus",
# "hi3518ev300",
# "hi3516dv300",
# ],
# "adapted_kernel": [ "liteos_a" ], # 组件已适配的内核
# "features": [], # 组件可配置的特性
# "deps": {
# "components": [], # 组件依赖的其他组件
# "third_party": [ # 组件依赖的三方开源软件
# "FreeBSD",
# "musl",
# "zlib",
# "FatFs",
# "Linux_Kernel",
# "lwip",
# "NuttX",
# "mtd-utils"
# ]
# }
# },
# ]
foreach(product_configed_component,
product_configed_subsystem.components) { #遍历项目控件数组
# Step 5: Check whether the component configured by product is exist.
# 第五步: 检查控件配置信息是否存在
component_found = false #初始为不存在
foreach(system_component, subsystem_info.components) {#项目控件和子系统中的控件遍历对比
if (product_configed_component.component ==
system_component.component) { #找到了liteos_a
component_found = true
}
}
#如果没找到的信息,则打印项目控件查找失败日志
assert(
component_found,
"Component \"${product_configed_component.component}\" not found" +
", please check your product configuration.")
# Step 6: Loop OS components and check validity of product configuration.
# 第六步: 检查子系统控件的有效性并遍历控件组,处理各个控件
foreach(component, subsystem_info.components) {
kernel_valid = false #检查内核
board_valid = false #检查开发板
# Step 6.1: Skip component which not configured by product.
if (component.component == product_configed_component.component) {
# Step 6.1.1: Loop OS components adapted kernel type.
foreach(component_adapted_kernel, component.adapted_kernel) {
if (component_adapted_kernel == product_cfg.kernel_type &&
kernel_valid == false) { #内核检测是否已适配
kernel_valid = true
}
}
# 如果内核未适配,则打印未适配日志
assert(
kernel_valid,
"Invalid component configed, ${subsystem_name}:${product_configed_component.component} " + "not available for kernel: ${product_cfg.kernel_type}!")
# Step 6.1.2: Add valid component for compiling.
# 添加有效组件进行编译
foreach(component_target, component.targets) {//遍历组件的编译入口

最低0.47元/天 解锁文章
3754

被折叠的 条评论
为什么被折叠?



