PTA03-树3 Tree Traversals Again

先写下题目吧。

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer NN (\le 3030) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to NN). Then 2N2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1


这道题在之前陈越老师还没出讲解的时候做了一遍,大致思路是根据出给的前序和中序得到两个数列,再根据遍历算法生成二叉树。这里我只贴出根据前序和中序数列建二叉树的过程。

BinTree BuildTree(int preorder[],int pre_s,int pre_e,int inorder[],int in_s,int in_e) //preorder和inorder分别为前序和中序的数列,pre_s,in_s分别是数列起点
//pre_e和in_e分别为数列最后元素所在位置
{
	int i;
	BinTree p;
	if(in_s>in_e)
		return NULL;
	for(i=in_s;i<in_e&&inorder[i]!=preorder[pre_s];i++);
	p=(BinTree)malloc(sizeof(struct TreeNode));
	p->Data=preorder[pre_s];
	p->Left=BuildTree(preorder,pre_s+1,pre_s+i-in_s,inorder,in_s,i-1);
	p->Right=BuildTree(preorder,pre_s+i-in_s+1,pre_e,inorder,i+1,in_e);
	return p;
}
主要的思想是分而治之。

今天听了这道题讲解,多了一个新思路,不建树,根据前序遍历的第一个元素即是后序遍历的最后一个元素,分而治之,下面给出我写的不用建树,直接得出后序遍历数列的程序。

void posttraversal2(int preorder[],int pre_s,int pre_e,int inorder[],int in_s,int in_e)
{
	int i;
	
	if(in_s>in_e)
		return ;
	postorder[count_3]=preorder[pre_s];
	count_3--;//初始值为前序遍历的最后一个元素的下标
	for(i=in_s;i<in_e&&inorder[i]!=preorder[pre_s];i++);
	posttraversal2(preorder,pre_s+i-in_s+1,pre_e,inorder,i+1,in_e);
	posttraversal2(preorder,pre_s+1,pre_s+i-in_s,inorder,in_s,i-1);
	return ;
}
其实这部分程序我直接根据上面建树的部分改写的,主要一点是得先遍历右子树,再遍历左子树。我测了一下,答案应该是一样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值