Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 14923 | Accepted: 10496 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
涨姿势了不是,斐波拉切的快速幂公式就在这里,解决了n很大是递归公式爆栈的问题吧
注意n=0特判即可
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 4;
const int mod = 10000;
struct mat {
int s[maxn][maxn];
mat(){
memset(s,0,sizeof(s));
};
mat operator * (const mat& c) {
mat ans;
for (int i = 0; i < maxn; i++) //矩阵乘法
for (int j = 0; j < maxn; j++)
for (int k = 0; k < maxn; k++)
ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j]) % mod;
return ans;
}
}str;
mat pow_mod(ll k) {
if (k == 1)
return str;
mat a = pow_mod(k/2);//不能改
mat ans = a * a;
if (k & 1)
ans = ans * str;
return ans;
}
int main() {
//freopen("in.txt","r",stdin);
int n;
str.s[0][0] = 1;
str.s[0][1] = 1;
str.s[1][0] = 1;
str.s[1][1] = 0;
while(~scanf("%d",&n)&&n!=-1) {
if(n==0)
puts("0");
else {
mat sub = pow_mod(n);
ll res = 0;
res = sub.s[0][1]%mod;
cout<<res<<endl;
}
}
return 0;
}