题目:
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
思路:
虽然这道题目的难度为中等,但我觉得其思路不是那么容易想到,这是因为在动态规划中,我们需要定义两个变量,推导两个递推式,并且两者之间是相互关联的:
1)cnt[i]:表示以nums[i]结尾的LIS的个数。
2)len[i]:表示以nums[i]结尾的LIS的长度。
对于每个nums[i],我们检查处于它前面的每个nums[j],如果nums[j] < nums[i],那么说明把nums[i]放在nums[j]之后可以构成更长的LIS。此时有两种情况:如果len[j] + 1 > len[i],说明把nums[i]加在nums[i]之后可以构成比nums[i]已有的LIS更长的LIS,所以我们就同时更新len[i]和cnt[i]。如果len[j] + 1 == len[i],那么说明把nums[j]加在nums[i]之后,构成的LIS和nums[i]原来已有的LIS具有相同的长度,所以我们只需要更新cnt[i]即可。当j循环完了之后,我们就获得了以nums[i]结尾的LIS的长度及个数。
最后,我们获得所有长度为max_len的LIS的个数即可。算法的时间复杂度是O(n^2),空间复杂度是O(n)。
代码:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size(), max_len = 1, ans = 0;
vector<int> cnt(n, 1); // cnt[i] is the count of LIS that ends with nums[i]
vector<int> len(n, 1); // len[i] is the length of the LIS that ends with nums[i]
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) { // nums[i] can be appended to nums[j]
if (len[j] + 1 > len[i]) { // appending nums[i] will generate longer LIS
len[i] = len[j] + 1;
cnt[i] = cnt[j];
}
else if (len[j] + 1 == len[i]) { // appending nums[i] will keep the length of LIS
cnt[i] += cnt[j];
}
}
}
max_len = max(max_len, len[i]);
}
for (int i = 0; i < n; ++i) {
if (len[i] == max_len) {
ans += cnt[i];
}
}
return ans;
}
};