S2: Correlation Coefficient and R-Squared

本文介绍了线性回归中常用的评估指标R2(决定系数)和皮尔森及斯皮尔曼相关系数。R2衡量回归方程的拟合度,而相关系数则反映两个变量间线性相关程度。皮尔森相关系数适用于等距数据,斯皮尔曼相关系数则适合等级数据。文章还讨论了这些指标的计算公式和适用条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  评价线性回归方程拟合的情况,一般有两个参数,一个是 R 2 R^2 R2,另一个是皮尔森相关系数(Pearson Correlation Coefficient)。说到皮尔森,就不得不想起来斯皮尔曼相关系数(Spearman Correlation Coefficient),因此今天学习这三个点。

1. 决定系数 R 2 R^2 R2

   R 2 R^2 R2衡量的是回归方程整体的拟合度,表达因变量与所有自变量之间的总体关系。 R 2 R^2 R2的计算公式如下:
(1) R 2 = 1 − ∑ i = 1 n ( y i − y i ^ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i-\hat{y_i})^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2} \tag 1 R2=1i=1n(yiyˉ)2i=1n(yiyi^)2(1)

公式中 y i y_i yi:表示实际观测到的值;
    y i ^ \hat{y_i} yi^:表示回归方程预测到的值;
    y ˉ \bar{y} yˉ:表示实际观测到的值的平均值

由公式(1),可以看出:

S S E = ∑ i = 1 n ( y i − y i ^ ) 2 SSE = \sum_{i=1}^{n}(y_i-\hat{y_i})^2 SSE=i=1n(yiyi^)2是预测值和观测值距离的平方和(残差平方和:error sum of squares);极端情况下,回归方程预测100%正确,这个数值是0,那么 R 2 = 1 R^2=1 R2=1

S S T = ∑ i = 1 n ( y i − y ˉ ) 2 SST = \sum_{i=1}^{n}(y_i-\bar{y})^2 SST=<

追问,调了惩罚系数后是如此 Iteration 1: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 2: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 3: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 4: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 5: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 6: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Iteration 7: f1: min = 0, max = 2.6792 f2: min = 0, max = 613 Correlation between f1 and f2: 1 Generation #0 - Repository size: 199 Iteration 1: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1934.9798, max = 0 f2: min = 0, max = 387.7075 Correlation between f1 and f2: -1 Generation #1 - Repository size: 200 Iteration 1: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1731.01, max = 0 f2: min = 0, max = 346.9105 Correlation between f1 and f2: -1 Generation #2 - Repository size: 200 Iteration 1: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1677.4074, max = 0 f2: min = 0, max = 336.1348 Correlation between f1 and f2: -1 Generation #3 - Repository size: 200 Iteration 1: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1678.3863, max = 0 f2: min = 0, max = 336.3324 Correlation between f1 and f2: -1 Generation #4 - Repository size: 200 Iteration 1: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1709.2166, max = 0 f2: min = 0, max = 342.5166 Correlation between f1 and f2: -1 Generation #5 - Repository size: 200 Iteration 1: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1610.6672, max = 0 f2: min = 0, max = 322.8538 Correlation between f1 and f2: -1 Generation #6 - Repository size: 200 Iteration 1: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 2: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 3: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 4: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 5: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 6: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Iteration 7: f1: min = -1682.636, max = 0 f2: min = 0, max = 337.2106 Correlation between f1 and f2: -1 Generation #7 - Repository size: 200 REP.pos_fit 的大小: ans = 200 2 REP.pos_fit 的内容: 1.0e+03 * -1.9350 0.3877 -1.7310 0.3469 -1.6774 0.3361 -1.6784 0.3363 -1.7092 0.3425 -1.6107 0.3229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
最新发布
07-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值