Putting Spark to Use: Fast In-Memory Computing for Your Big Data Applications

Apache Spark 是一种革命性的大数据处理引擎,它通过统一的编程模型和内存计算能力,显著提高了数据处理速度和易用性。适用于交互式数据分析、批处理、实时流处理和机器学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Our thanks to Databricks, the company behind Apache Spark (incubating), for providing the guest post below. Cloudera and Databricks recently announced that Cloudera will distribute and support Spark in CDH. Look for more posts describing Spark internals and Spark + CDH use cases in the near future.

Apache Hadoop has revolutionized big data processing, enabling users to store and process huge amounts of data at very low costs. MapReduce has proven to be an ideal platform to implement complex batch applications as diverse as sifting through system logs, running ETL, computing web indexes, and powering personal recommendation systems. However, its reliance on persistent storage to provide fault tolerance and its one-pass computation model make MapReduce a poor fit for low-latency applications and iterative computations, such as machine learning and graph algorithms.

Apache Spark addresses these limitations by generalizing the MapReduce computation model, while dramatically improving performance and ease of use.

Fast and Easy Big Data Processing with Spark

At its core, Spark provides a general programming model that enables developers to write application by composing arbitrary operators, such as mappers, reducers, joins, group-bys, and filters. This composition makes it easy to express a wide array of computations, including iterative machine learning, streaming, complex queries, and batch.

In addition, Spark keeps track of the data that each of the operators produces, and enables applications to reliablystore this data in memory. This is the key to Spark’s performance, as it allows applications to avoid costly disk accesses. As illustrated in the figure below, this feature enables:

  • Low-latency computations by caching the working dataset in memory and then performing computations at memory speeds, and
  • Efficient iterative algorithm by having subsequent iterations share data through memory, or repeatedly accessing the same dataset

Spark’s ease-of-use comes from its general programming model, which does not constrain users to structure their applications into a bunch of map and reduce operations. Spark’s parallel programs look very much like sequential programs, which make them easier to develop and reason about. Finally, Spark allows users to easily combine batch, interactive, and streaming  jobs in the same application. As a result, a Spark job can be up to 100x faster and requires writing 2-10x less code than an equivalent Hadoop job.

Using Spark for Advanced Data Analysis and Data Science

Interactive Data Analysis

One of Spark’s most useful features is the interactive shell, bringing Spark’s capabilities to the user immediately – no IDE and code compilation required. The shell can be used as the primary tool for exploring data interactively, or as means to test portions of an application you’re developing.

The screenshot below shows a Spark Python shell in which the user loads a file and then counts the number of lines that contain “Holiday”.

As illustrated in this example, Spark can read and write data from and to HDFS. Thus, as soon as Spark is installed, a Hadoop user can immediately start analyzing HDFS data. Then, by caching a dataset in memory, a user can perform a large variety of complex computations interactively!

Spark also provides a Scala shell, and APIs in Java, Scala, and Python for stand-alone applications.

Faster Batch

Some of the earliest deployments of Spark have focused on how to improve performance in existing MapReduce applications. Remember that MapReduce is actually a generic execution framework and is not exclusive to it’s most well-known implementation in core Hadoop. Spark provides MapReduce as well, and because it can efficiently use memory (while using lineage to recover from failure if necessary), some implementations are simply faster in Spark’s MapReduce as compared to Hadoop’s MapReduce right off the bat, before you even get in to leveraging cache for iterative programs.

The example below illustrates Spark’s implementation of MapReduce’s most famous example, word count. You can see that Spark supports operator chaining. This becomes very useful when doing a bit of pre- or post-processing on your data, such as filtering data prior to running a complex MapReduce job.

val file = sc.textFile("hdfs://.../pagecounts-*.gz")
val counts = file.flatMap(line => line.split(" "))
                   
.map(word => (word, 1))
                   
.reduceByKey(_ + _)
counts
.saveAsTextFile("hdfs://.../word-count")

 

Spark’s batch capabilities have been proven in real-world scenarios. A very large Silicon Valley Internet company did a plain-vanilla port of a single MR job implementing feature extraction in a model training pipeline, and saw a 3x speedup.

Iterative Algorithms

Spark allow users and applications to explicitly cache a dataset by calling the cache() operation. This means that your applications can now access data from RAM instead of disk, which can dramatically improve the performance ofiterative algorithms that access the same dataset repeatedly. This use case covers an important class of applications, as all machine learning and graph algorithms are iterative in nature.

Two of the world’s largest Internet companies leverage Spark’s efficient iterative execution to provide content recommendations and ad targeting. Machine-learning algorithms such as logistic regression have run 100x faster than previous Hadoop-based implementations (see the plot to the right), while other algorithms such as collaborative filtering or alternating direction method of multipliers have run over 15x faster.

The following example uses logistic regression to find the best hyperplane that separates two sets of points in a multi-dimensional feature space. Note the cached dataset “points” is accessed repeatedly from memory, whereas in MapReduce, each iteration will read data from the disk, which incurs a huge overhead.

val points = sc.textFile("...").map(parsePoint).cache()
var w = Vector.random(D) //current separating plane
for (i <- 1 to ITERATIONS) {
   
val gradient = points.map(p =>
     
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
   
).reduce(_ + _)
    w
-= gradient
 
}
  println
("Final separating plane: " + w)

 

Real-Time Stream Processing

With a low-latency data analysis system at your disposal, it’s natural to extend the engine towards processing live data streams. Spark has an API for working with streams, providing exactly-once semantics and full recovery of stateful operators. It also has the distinct advantage of giving you the same Spark APIs to process your streams, including reuse of your regular Spark application code.

The code snippet below shows a simple job processing a network stream, filtering for words beginning with a hashtag and performing a word count on every 10 seconds of data. Compare this to the previous word-count example and you’ll see how almost the exact same code is used, but this time processing a live data stream.

val ssc = new StreamingContext(args(0), "NetworkHashCount", Seconds(10),
     
System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_EXAMPLES_JAR")))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" ")).filter(_.startsWith("#"))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts
.print()
ssc
.start()

 

Although the Spark Streaming API was released less than a year ago, users have deployed it in production to provide monitoring and alerting against stateful, aggregated data from system logs, achieving very fast processing with only seconds of latency.

Faster Decision-Making

Many companies use big data to make or facilitate user’s decisions in the form of recommendation systems, ad targeting, or predictive analytics. One of the key properties of any decision is latency — that is, the time it takes to make the decision from the moment the input data is available. Reducing decision latency can significantly increase their effectiveness, and ultimately increase the company’s return on investment. Since many of these decisions are based on complex computations (such as machine learning and statistical algorithms), Spark is an ideal fit to speed up decisions.

Not surprisingly, Spark has been deployed to improve decision quality as well as to reduce latency. Examples range from ad targeting, to improving the quality of video delivery over the Internet.

Unified Pipelines

Many of today’s Big Data deployments go beyond MapReduce by integrating other frameworks for streaming, batch, and interactive computation. Users can dramatically reduce the complexity of their data processing pipelines by replacing several systems with Spark.

For instance, today, many companies use MapReduce to generate reports and answer historical queries, and deploy a separate system for stream processing to follow key metrics in real-time. This approach requires one to maintain and manage two different systems, as well as develop applications for two different computation models. It would also require one to make sure the results provided by the two stacks are consistent (for example, a count computed by the streaming application and the same count computed by MapReduce).

Recently, users have deployed Spark to implement stream processing as well as batch processing for providing historical reports. This not only simplifies deployment and maintenance, but dramatically simplifies application development. For example, maintaining the consistency of real-time and historical metrics is no longer a problem as they are computed using the same code. A final benefit of the unification is improved performance, as there is no need to move the data between different systems: once in-memory, the data can be shared between the streaming computations and historical (or interactive) queries.  

Your Turn: Go Get Started

Spark is very easy to get started writing powerful Big Data applications. Your existing Hadoop and/or programming skills will have you productively interacting with your data in minutes. Go get started today:



标题基于SpringBoot+Vue的学生交流互助平台研究AI更换标题第1章引言介绍学生交流互助平台的研究背景、意义、现状、方法与创新点。1.1研究背景与意义分析学生交流互助平台在当前教育环境下的需求及其重要性。1.2国内外研究现状综述国内外在学生交流互助平台方面的研究进展与实践应用。1.3研究方法与创新点概述本研究采用的方法论、技术路线及预期的创新成果。第2章相关理论阐述SpringBoot与Vue框架的理论基础及在学生交流互助平台中的应用。2.1SpringBoot框架概述介绍SpringBoot框架的核心思想、特点及优势。2.2Vue框架概述阐述Vue框架的基本原理、组件化开发思想及与前端的交互机制。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue在学生交流互助平台中的整合方式及优势。第3章平台需求分析深入分析学生交流互助平台的功能需求、非功能需求及用户体验要求。3.1功能需求分析详细阐述平台的各项功能需求,如用户管理、信息交流、互助学习等。3.2非功能需求分析对平台的性能、安全性、可扩展性等非功能需求进行分析。3.3用户体验要求从用户角度出发,提出平台在易用性、美观性等方面的要求。第4章平台设计与实现具体描述学生交流互助平台的架构设计、功能实现及前后端交互细节。4.1平台架构设计给出平台的整体架构设计,包括前后端分离、微服务架构等思想的应用。4.2功能模块实现详细阐述各个功能模块的实现过程,如用户登录注册、信息发布与查看、在线交流等。4.3前后端交互细节介绍前后端数据交互的方式、接口设计及数据传输过程中的安全问题。第5章平台测试与优化对平台进行全面的测试,发现并解决潜在问题,同时进行优化以提高性能。5.1测试环境与方案介绍测试环境的搭建及所采用的测试方案,包括单元测试、集成测试等。5.2测试结果分析对测试结果进行详细分析,找出问题的根源并
内容概要:本文详细介绍了一个基于灰狼优化算法(GWO)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量多步时间序列预测项目。该项目旨在解决传统时序预测方法难以捕捉非线性、复杂时序依赖关系的问题,通过融合CNN的空间特征提取、BiLSTM的时序建模能力及注意力机制的动态权重调节能力,实现对多变量多步时间序列的精准预测。项目不仅涵盖了数据预处理、模型构建与训练、性能评估,还包括了GUI界面的设计与实现。此外,文章还讨论了模型的部署、应用领域及其未来改进方向。 适合人群:具备一定编程基础,特别是对深度学习、时间序列预测及优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①用于智能电网负荷预测、金融市场多资产价格预测、环境气象多参数预报、智能制造设备状态监测与预测维护、交通流量预测与智慧交通管理、医疗健康多指标预测等领域;②提升多变量多步时间序列预测精度,优化资源调度和风险管控;③实现自动化超参数优化,降低人工调参成本,提高模型训练效率;④增强模型对复杂时序数据特征的学习能力,促进智能决策支持应用。 阅读建议:此资源不仅提供了详细的代码实现和模型架构解析,还深入探讨了模型优化和实际应用中的挑战与解决方案。因此,在学习过程中,建议结合理论与实践,逐步理解各个模块的功能和实现细节,并尝试在自己的项目中应用这些技术和方法。同时,注意数据预处理的重要性,合理设置模型参数与网络结构,控制多步预测误差传播,防范过拟合,规划计算资源与训练时间,关注模型的可解释性和透明度,以及持续更新与迭代模型,以适应数据分布的变化。
<think>好的,用户提供了一段日志信息,需要帮忙分析问题。首先,我需要仔细看一下日志内容。时间戳显示的是2025年,不过这可能是因为系统时间设置错误或者日志记录的配置有问题,不过暂时先不管这个,先看错误信息。 日志里提到有INFO、WARNING和ERROR级别的消息。首先是INFO记录了一个GET请求到http://es01:9200/,状态是N/A,持续了3.987秒。这说明应用尝试访问Elasticsearch节点es01:9200,但请求失败了,状态N/A可能表示没有收到响应。 接下来是WARNING,说节点Urllib3HttpNode失败了一次,被设置了1秒的超时。然后尝试重试,重试次数0次,总共3次。之后出现了Traceback,抛出了ConnectionError,具体原因是NameResolutionError,无法解析主机名'es01',错误信息是“Name or service not known”。这说明应用在尝试解析es01这个主机名时失败了,导致无法建立连接。 然后,又出现了类似的WARNING,节点失败次数增加,超时时间可能增加,但问题根源还是主机名解析失败。 用户的问题是“这是什么问题啊”,需要解释日志中的错误原因,并给出解决方案。根据错误信息,最直接的问题是DNS解析失败,无法找到es01这个主机名。可能的原因有几个方面: 1. 主机名配置问题:es01可能没有在DNS服务器中正确注册,或者在运行应用的机器上的hosts文件中没有对应的条目。 2. 网络连接问题:机器可能无法访问DNS服务器,或者有防火墙阻止了DNS查询。 3. 应用配置错误:应用可能错误地配置了Elasticsearch的主机名,应该是正确的地址,比如IP或者正确的主机名。 4. 容器环境问题:如果是在Docker或Kubernetes环境中运行,es01可能是一个服务名,需要确保网络配置正确,服务发现正常。 接下来需要验证这些可能性。首先检查应用所在环境是否能解析es01。可以在机器上执行nslookup es01或者ping es01,看看是否能解析出IP地址。如果解析失败,就需要配置DNS或者在hosts文件中添加条目。例如,在hosts文件中添加一行:192.168.1.100 es01,假设Elasticsearch运行在192.168.1.100。 另外,如果是容器环境,比如Docker Compose,需要确保服务名称正确,并且容器在同一个网络中。检查Docker Compose文件中的服务定义和网络配置是否正确。例如,服务名是否确实是es01,端口是否正确映射,网络是否被其他服务正确加入。 还有可能应用配置的Elasticsearch地址错误,比如应该是http://localhost:9200,但错误地配置成了es01。这时候需要检查应用的配置文件,确认主机名是否正确。 此外,检查Elasticsearch是否确实在运行,并且监听在9200端口。可以使用curl或者telnet检查端口是否可达。如果Elasticsearch没有运行,或者防火墙阻止了访问,也会导致连接问题。 总结一下,解决方案包括检查主机名解析、检查网络连接、验证Elasticsearch配置和状态,以及确保容器(如果有使用)的网络设置正确。用户可能需要根据他们的具体环境来调整这些步骤。</think>以下是对该日志问题的逐步分析: --- ### 一、核心问题定位 从日志中可见关键错误: $$ \text{NameResolutionError: Failed to resolve 'es01'} $$ **本质原因**:应用程序无法通过DNS解析主机名`es01`,导致无法连接Elasticsearch服务。 --- ### 二、错误链分析 1. **请求阶段** ```log GET http://es01:9200/ [status:N/A duration:3.987s] ``` - 尝试访问`es01:9200`但未收到响应(`status:N/A`) - 耗时3.987秒后超时 2. **重试机制触发** ```log Node failed for 1 times...putting on 1 second timeout Retrying request after failure (attempt 0 of 3) ``` - 客户端启动重试机制(最多3次) 3. **根本错误暴露** ```log NameResolutionError: Failed to resolve 'es01' ``` - 明确显示DNS解析失败 --- ### 三、可能原因排查 #### 场景1:DNS配置错误 - **检查项** - 目标机器是否配置了正确的DNS服务器 - 域名`es01`是否在DNS服务器中注册 - 本地`/etc/hosts`文件是否包含`es01`的IP映射 - **验证命令** ```bash nslookup es01 # DNS解析测试 ping es01 # 检查基本连通性 cat /etc/hosts # 查看本地hosts配置 ``` #### 场景2:容器网络问题(常见于Docker/K8s环境) - **检查项** - 容器是否与Elasticsearch服务在同一个网络 - 容器内DNS配置是否正确 - 服务名称`es01`是否与容器服务命名一致 - **Docker示例修复** ```yaml # docker-compose.yml services: app: networks: - es_network # 必须与ES服务共享网络 elasticsearch: image: elasticsearch:8.5.0 container_name: es01 # 必须与代码中配置的主机名一致 networks: - es_network ``` #### 场景3:应用配置错误 - **检查项** - 代码/配置文件中Elasticsearch的地址是否正确 - 是否应该使用IP地址替代主机名 - **修正示例** ```python # 错误配置 ES_HOST = "http://es01:9200" # 依赖DNS解析 # 正确配置(直接使用IP) ES_HOST = "http://192.168.1.100:9200" ``` --- ### 四、紧急修复步骤 1. **临时解决方案** 在主机或容器的`/etc/hosts`中添加解析: ```bash echo "192.168.1.100 es01" >> /etc/hosts # 替换为实际ES服务器IP ``` 2. **永久解决方案** - 在DNS服务器中添加`es01`的A记录 - 或改用静态IP连接Elasticsearch 3. **环境验证** ```bash curl http://es01:9200 # 测试ES连通性 telnet es01 9200 # 测试端口可达性 ``` --- ### 五、附加排查建议 1. **防火墙检查** ```bash iptables -L -n | grep 9200 # 检查端口是否开放 ``` 2. **Elasticsearch服务状态** ```bash systemctl status elasticsearch # 确认服务正在运行 ``` 3. **查看ES日志** ```bash journalctl -u elasticsearch # 检查ES自身是否有异常 ``` --- ### 六、典型错误对比 | 错误类型 | 表现特征 | 解决方案 | |------------------------|----------------------------|-------------------------| | DNS解析失败 | `NameResolutionError` | 配置DNS/hosts文件 | | 连接拒绝 | `ConnectionRefusedError` | 检查ES服务状态和防火墙 | | 证书错误 | `SSLError` | 更新证书或禁用SSL验证 | | 认证失败 | `AuthenticationException` | 检查用户名/密码或API密钥 | --- 通过上述步骤,可系统性解决因`es01`解析失败导致的Elasticsearch连接问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值