进程与线程的区别

进程和线程的比较

1、进程是资源分配最小单位,线程是系统调度的最小单位;

2、进程有自己独立的地址空间,每启动一个进程,系统都会为其分配地址空间;线程没有独立的地址空间,它使用相同的地址空间共享数据;

3、多进程程序更健壮,一个进程死掉不会对另一个进程造成影响(源于有独立的地址空间);一个线程死掉,整个进程就死掉了(因为共享地址空间);

4、CPU切换一个线程比切换进程花费小;

5、创建一个线程比进程开销小;

6、同一进程内的线程共享本进程的资源,但是进程之间的资源是相互独立的。

7、线程之间通信更方便,同一个进程下,线程共享全局变量,静态变量等数据,进程之间的通信需要以通信的方式(IPC)进行;(但多线程程序处理好同步与互斥是个难点)

8、线程执行开销小,但不利于资源的管理和保护;而进程正相反,同时,线程适合于在smp(多核处理器)上运行, 而进程则可以跨机器迁移。在同一进程中,线程的切换不会引起进程的切换,在 由一个进程中的线程切换到另一个进程中的线程时,将会引起进程的切换。

9、执行过程中的区别,每个独立的进程有一个程序运行的入口、顺序执行序列和成序的出口。但是线程不能独立执行,必须依存在应用程序中,由应用程序提供多个线程执行

如果有错误欢迎大家指正,如有不足欢迎大家补充,我会即使回复更新哒!

参考文章:
进程和线程的区别

C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度稳定性。通过仿真结果对比分析,验证了所提方法在快速性准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法扰动观察法在实际光伏系统中的实现机制切换逻辑;②学习如在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值