- 根据系统,安装nvidia显卡驱动、cuda、cudnn
下载链接:
cuda下载:https://developer.nvidia.com/cuda-downloads
cudnn下载:https://developer.nvidia.com/rdp/cudnn-archive
cudnn安装指导:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html - 下载安装libtorch (gpu)
参考: https://pytorch.org/cppdocs/installing.html
2.1 根据系统及需求选择cuda版本的libtorch
下载链接:https://pytorch.org/
命令行运行
wget https://download.pytorch.org/libtorch/cu102/libtorch-shared-with-deps-1.8.1%2Bcu102.zip
2.2 解压
命令行运行
unzip libtorch-shared-with-deps-1.8.1+cu102.zip
将解压得到的文件放到 "~/libtorch"目录
- 编写、运行c++代码
参考: https://pytorch.apachecn.org/docs/1.0/cpp_export.html
3.1 将pytorch模型转化为c++可调用的模型
运行python代码:
import torch
import torchvision
get model
model = torchvision.models.resnet18()<