leetcode 455. 分发饼干(python)

455. 分发饼干【简单】

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

注意:

你可以假设胃口值为正。
一个小朋友最多只能拥有一块饼干。

示例 1:

输入: [1,2,3], [1,1]

输出: 1

解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:

输入: [1,2], [1,2,3]

输出: 2

解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

思路

贪心算法,用尽量小的饼干满足小胃口的孩子,所以先排序

代码

class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
      # 300 ms	15.9 MB
        g = sorted(g)
        s = sorted(s)
        child = 0
        cookie = 0
        while (child < len(g)) and (cookie < len(s)):
          print(child,cookie)
          if g[child] <= s[cookie]:
            child += 1
          cookie += 1
        return child

 

### 贪心算法在 LeetCode 上的应用 贪心算法是一种通过局部最优选择来达到全局最优解的方法。其核心思想是在每一步都做出当前状态下最好的选择,从而希望最终能够得到整体的最优解[^1]。 以下是基于 Python 的几个经典贪心算法题目及其解决方案: --- #### 题目 1: **LeetCode 455. Assign Cookies** 给定两个数组 `g` 和 `s`,分别表示孩子的胃口值和饼干大小。每个孩子最多只能吃一块饼干,求最大满足的孩子数量。 ##### 解法 先对两个数组进行排序,然后从小到大分配饼干给尽可能多的孩子。 ```python def findContentChildren(g, s): g.sort() s.sort() i, j = 0, 0 count = 0 while i < len(g) and j < len(s): if s[j] >= g[i]: count += 1 i += 1 j += 1 return count ``` 此方法利用了贪心策略,在每次循环中优先考虑最小需求的孩子并匹配最合适的饼干[^3]。 --- #### 题目 2: **LeetCode 135. Candy** 有 n 个小孩站在一条直线上,每个小孩有一个评分值。分发糖果的要求是:如果某个小孩的评分高于相邻的小孩,则该小孩获得更多的糖果;至少每人一颗糖果。 ##### 解法 两次遍历数组,一次从前向后,另一次从后向前,确保左右两侧的关系都被满足。 ```python def candy(ratings): n = len(ratings) candies = [1] * n for i in range(1, n): if ratings[i] > ratings[i - 1]: candies[i] = candies[i - 1] + 1 for i in range(n - 2, -1, -1): if ratings[i] > ratings[i + 1]: candies[i] = max(candies[i], candies[i + 1] + 1) return sum(candies) ``` 这种方法通过两轮扫描实现了局部最优条件下的全局最优解。 --- #### 题目 3: **LeetCode 621. Task Scheduler** 给定一组任务字符以及冷却时间 `n`,计算完成所有任务所需的最少单位时间数。 ##### 解法 统计频率最高的任务数目,并根据这些任务之间的间隔安排其他任务。 ```python from collections import Counter def leastInterval(tasks, n): task_counts = list(Counter(tasks).values()) max_freq = max(task_counts) max_count = task_counts.count(max_freq) intervals = (max_freq - 1) * (n + 1) + max_count return max(len(tasks), intervals) ``` 上述代码的关键在于理解如何合理填充高频任务之间的时间间隙。 --- #### 总结 解决贪心类问题时,通常需要明确以下几个方面: - 是否可以通过逐步优化子结构解决问题? - 如何定义“局部最优”,它是否能导向“全局最优”? 此外,清晰表达逻辑流程有助于构建完整的解决方案[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值