Java多线程学习笔记

Java多线程面试题

线程的创建方式有哪些?

1.继承Thread类

这是最直接的一种方式,用户自定义类继承java.lang.Thread类,重写其run()方法,run()方法中定义了线程执行的具体任务。创建该类的实例后,通过调用start()方法启动线程。

采用继承Thread类方式

  • 优点: 编写简单,如果需要访问当前线程,无需使用Thread.currentThread ()方法,直接使用this,即可获得当前线程

  • 缺点:因为线程类已经继承了Thread类,所以不能再继承其他的父类

2.实现Runnable接口

如果一个类已经继承了其他类,就不能再继承Thread类,此时可以实现java.lang.Runnable接口。实现Runnable接口需要重写run()方法,然后将此Runnable对象作为参数传递给Thread类的构造器,创建Thread对象后调用其start()方法启动线程。

采用实现Runnable接口方式:

  • 优点:线程类只是实现了Runable接口,还可以继承其他的类。在这种方式下,可以多个线程共享同一个目标对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU代码和数据分开,形成清晰的模型,较好地体现了面向对象的思想。

  • 缺点:编程稍微复杂,如果需要访问当前线程,必须使用Thread.currentThread()方法。

3.实现Callable接口与FutureTask

java.util.concurrent.Callable接口类似于Runnable,但Callable的call()方法可以有返回值并且可以抛出异常。要执行Callable任务,需将它包装进一个FutureTask,因为Thread类的构造器只接受Runnable参数,而FutureTask实现了Runnable接口。

采用实现Callable接口方式:

  • 缺点:编程稍微复杂,如果需要访问当前线程,必须调用Thread.currentThread()方法。

  • 优点:线程只是实现Runnable或实现Callable接口,还可以继承其他类。这种方式下,多个线程可以共享一个target对象,非常适合多线程处理同一份资源的情形。

4.使用线程池(Executor框架)

从Java 5开始引入的java.util.concurrent.ExecutorService和相关类提供了线程池的支持,这是一种更高效的线程管理方式,避免了频繁创建和销毁线程的开销。可以通过Executors类的静态方法创建不同类型的线程池。

采用线程池方式:

  • 缺点:程池增加了程序的复杂度,特别是当涉及线程池参数调整和故障排查时。错误的配置可能导致死锁、资源耗尽等问题,这些问题的诊断和修复可能较为复杂。

  • 优点:线程池可以重用预先创建的线程,避免了线程创建和销毁的开销,显著提高了程序的性能。对于需要快速响应的并发请求,线程池可以迅速提供线程来处理任务,减少等待时间。并且,线程池能够有效控制运行的线程数量,防止因创建过多线程导致的系统资源耗尽(如内存溢出)。通过合理配置线程池大小,可以最大化CPU利用率和系统吞吐量。

Java线程的状态有哪些?

线程状态解释
NEW尚未启动的线程状态,即线程创建,还未调用start方法
RUNNABLE就绪状态(调用start,等待调度)+正在运行
BLOCKED等待监视器锁时,陷入阻塞状态
WAITING等待状态的线程正在等待另一线程执行特定的操作(如notify)
TIMED_WAITING具有指定等待时间的等待状态
TERMINATED线程完成执行,终止状态

blocked和waiting有啥区别

  • 触发条件:线程进入BLOCKED状态通常是因为试图获取一个对象的锁(monitor lock),但该锁已经被另一个线程持有。这通常发生在尝试进入synchronized块或方法时,如果锁已被占用,则线程将被阻塞直到锁可用。线程进入WAITING状态是因为它正在等待另一个线程执行某些操作,例如调用Object.wait()方法、Thread.join()方法或LockSupport.park()方法。在这种状态下,线程将不会消耗CPU资源,并且不会参与锁的竞争。

  • 唤醒机制:当一个线程被阻塞等待锁时,一旦锁被释放,线程将有机会重新尝试获取锁。如果锁此时未被其他线程获取,那么线程可以从BLOCKED状态变为RUNNABLE状态。线程在WAITING状态中需要被显式唤醒。例如,如果线程调用了Object.wait(),那么它必须等待另一个线程调用同一对象上的Object.notify()或Object.notifyAll()方法才能被唤醒。

Java中有哪些常用的锁,在什么场景下使用?

  • 内置锁(synchronized):Java中的synchronized关键字是内置锁机制的基础,可以用于方法或代码块。当一个线程进入synchronized代码块或方法时,它会获取关联对象的锁;当线程离开该代码块或方法时,锁会被释放。如果其他线程尝试获取同一个对象的锁,它们将被阻塞,直到锁被释放。其中,syncronized加锁时有无锁、偏向锁、轻量级锁和重量级锁几个级别。偏向锁用于当一个线程进入同步块时,如果没有任何其他线程竞争,就会使用偏向锁,以减少锁的开销。轻量级锁使用线程栈上的数据结构,避免了操作系统级别的锁。重量级锁则涉及操作系统级的互斥锁。

  • ReentrantLockjava.util.concurrent.locks.ReentrantLock是一个显式的锁类,提供了比synchronized更高级的功能,如可中断的锁等待、定时锁等待、公平锁选项等。ReentrantLock使用lock()unlock()方法来获取和释放锁。其中,公平锁按照线程请求锁的顺序来分配锁,保证了锁分配的公平性,但可能增加锁的等待时间。非公平锁不保证锁分配的顺序,可以减少锁的竞争,提高性能,但可能造成某些线程的饥饿。

  • 读写锁(ReadWriteLock)java.util.concurrent.locks.ReadWriteLock接口定义了一种锁,允许多个读取者同时访问共享资源,但只允许一个写入者。读写锁通常用于读取远多于写入的情况,以提高并发性。

  • 乐观锁和悲观锁:悲观锁(Pessimistic Locking)通常指在访问数据前就锁定资源,假设最坏的情况,即数据很可能被其他线程修改。synchronizedReentrantLock都是悲观锁的例子。乐观锁(Optimistic Locking)通常不锁定资源,而是在更新数据时检查数据是否已被其他线程修改。乐观锁常使用版本号或时间戳来实现。

  • 自旋锁:自旋锁是一种锁机制,线程在等待锁时会持续循环检查锁是否可用,而不是放弃CPU并阻塞。通常可以使用CAS来实现。这在锁等待时间很短的情况下可以提高性能,但过度自旋会浪费CPU资源。

怎么保证多线程安全?

  • synchronized关键字:可以使用synchronized关键字来同步代码块或方法,确保同一时刻只有一个线程可以访问这些代码。对象锁是通过synchronized关键字锁定对象的监视器(monitor)来实现的。

  • volatile关键字:volatile关键字用于变量,确保所有线程看到的是该变量的最新值,而不是可能存储在本地寄存器中的副本。

  • Lock接口和ReentrantLock类:java.util.concurrent.locks.Lock接口提供了比synchronized更强大的锁定机制,ReentrantLock是一个实现该接口的例子,提供了更灵活的锁管理和更高的性能。

  • 原子类:Java并发库(java.util.concurrent.atomic)提供了原子类,如AtomicIntegerAtomicLong等,这些类提供了原子操作,可以用于更新基本类型的变量而无需额外的同步。

  • 线程局部变量:ThreadLocal类可以为每个线程提供独立的变量副本,这样每个线程都拥有自己的变量,消除了竞争条件。

  • 并发集合:使用java.util.concurrent包中的线程安全集合,如ConcurrentHashMapConcurrentLinkedQueue等,这些集合内部已经实现了线程安全的逻辑。

  • JUC工具类: 使用java.util.concurrent包中的一些工具类可以用于控制线程间的同步和协作。例如:SemaphoreCyclicBarrier等。

介绍一下线程池的工作原理

线程池是为了减少频繁的创建线程和销毁线程带来的性能损耗,线程池的工作原理如下图:

线程池分为核心线程池,线程池的最大容量,还有等待任务的队列,提交一个任务,如果核心线程没有满,就创建一个线程,如果满了,就是会加入等待队列,如果等待队列满了,就会增加线程,如果达到最大线程数量,如果都达到最大线程数量,就会按照一些丢弃的策略进行处理。

Threadlocal作用

ThreadLocal是Java中用于解决线程安全问题的一种机制,它允许创建线程局部变量,即每个线程都有自己独立的变量副本,从而避免了线程间的资源共享和同步问题。

悲观锁和乐观锁的区别?

  • 乐观锁: 就像它的名字一样,对于并发间操作产生的线程安全问题持乐观状态,乐观锁认为竞争不总 是会发生,因此它不需要持有锁,将比较-替换这两个动作作为一个原子操作尝试去修改内存中的变量,如果失败则表示发生冲突,那么就应该有相应的重试逻辑。

  • 悲观锁: 还是像它的名字一样,对于并发间操作产生的线程安全问题持悲观状态,悲观锁认为竞争总 是会发生,因此每次对某资源进行操作时,都会持有一个独占的锁,就像 synchronized,不管三七二十一,直接上了锁就操作资源了。

Java中想实现一个乐观锁,都有哪些方式?

  1. CAS(Compare and Swap)操作: CAS 是乐观锁的基础。Java 提供了 java.util.concurrent.atomic 包,包含各种原子变量类(如 AtomicInteger、AtomicLong),这些类使用 CAS 操作实现了线程安全的原子操作,可以用来实现乐观锁。

  2. 版本号控制:增加一个版本号字段记录数据更新时候的版本,每次更新时递增版本号。在更新数据时,同时比较版本号,若当前版本号和更新前获取的版本号一致,则更新成功,否则失败。

  3. 时间戳:使用时间戳记录数据的更新时间,在更新数据时,在比较时间戳。如果当前时间戳大于数据的时间戳,则说明数据已经被其他线程更新,更新失败。

java里面的线程和操作系统的线程一样吗?

Java 底层会调用 pthread_create 来创建线程,所以本质上 java 程序创建的线程,就是和操作系统线程是一样的,是 1 对 1 的线程模型。

使用多线程要注意哪些问题?

Java的线程安全在三个方面体现:

  • 原子性:提供互斥访问,同一时刻只能有一个线程对数据进行操作,在Java中使用了atomic包(这个包提供了一些支持原子操作的类,这些类可以在多线程环境下保证操作的原子性)和synchronized关键字来确保原子性;

  • 可见性:一个线程对主内存的修改可以及时地被其他线程看到,在Java中使用了synchronized和volatile这两个关键字确保可见性;

  • 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序,该观察结果一般杂乱无序,在Java中使用了happens-before原则来确保有序性。

保证数据的一致性有哪些方案呢?

  • 事务管理:使用数据库事务来确保一组数据库操作要么全部成功提交,要么全部失败回滚。通过ACID(原子性、一致性、隔离性、持久性)属性,数据库事务可以保证数据的一致性。

  • 锁机制:使用锁来实现对共享资源的互斥访问。在 Java 中,可以使用 synchronized 关键字、ReentrantLock 或其他锁机制来控制并发访问,从而避免并发操作导致数据不一致。

  • 版本控制:通过乐观锁的方式,在更新数据时记录数据的版本信息,从而避免同时对同一数据进行修改,进而保证数据的一致性。

juc包下你常用的类?

线程池相关:

  • ThreadPoolExecutor:最核心的线程池类,用于创建和管理线程池。通过它可以灵活地配置线程池的参数,如核心线程数、最大线程数、任务队列等,以满足不同的并发处理需求。

  • Executors:线程池工厂类,提供了一系列静态方法来创建不同类型的线程池,如newFixedThreadPool(创建固定线程数的线程池)、newCachedThreadPool(创建可缓存线程池)、newSingleThreadExecutor(创建单线程线程池)等,方便开发者快速创建线程池。

并发集合类:

  • ConcurrentHashMap:线程安全的哈希映射表,用于在多线程环境下高效地存储和访问键值对。它采用了分段锁等技术,允许多个线程同时访问不同的段,提高了并发性能,在高并发场景下比传统的Hashtable性能更好。

  • CopyOnWriteArrayList:线程安全的列表,在对列表进行修改操作时,会创建一个新的底层数组,将修改操作应用到新数组上,而读操作仍然可以在旧数组上进行,从而实现了读写分离,提高了并发读的性能,适用于读多写少的场景。

同步工具类:

  • CountDownLatch:允许一个或多个线程等待其他一组线程完成操作后再继续执行。它通过一个计数器来实现,计数器初始化为线程的数量,每个线程完成任务后调用countDown方法将计数器减一,当计数器为零时,等待的线程可以继续执行。常用于多个线程完成各自任务后,再进行汇总或下一步操作的场景。

  • CyclicBarrier:让一组线程互相等待,直到所有线程都到达某个屏障点后,再一起继续执行。与CountDownLatch不同的是,CyclicBarrier可以重复使用,当所有线程都通过屏障后,计数器会重置,可以再次用于下一轮的等待。适用于多个线程需要协同工作,在某个阶段完成后再一起进入下一个阶段的场景。

  • Semaphore:信号量,用于控制同时访问某个资源的线程数量。它维护了一个许可计数器,线程在访问资源前需要获取许可,如果有可用许可,则获取成功并将许可计数器减一,否则线程需要等待,直到有其他线程释放许可。常用于控制对有限资源的访问,如数据库连接池、线程池中的线程数量等。

原子类:

  • AtomicInteger:原子整数类,提供了对整数类型的原子操作,如自增、自减、比较并交换等。通过硬件级别的原子指令来保证操作的原子性和线程安全性,避免了使用锁带来的性能开销,在多线程环境下对整数进行计数、状态标记等操作非常方便。

  • AtomicReference:原子引用类,用于对对象引用进行原子操作。可以保证在多线程环境下,对对象的更新操作是原子性的,即要么全部成功,要么全部失败,不会出现数据不一致的情况。常用于实现无锁数据结构或需要对对象进行原子更新的场景。

什么情况会产生死锁问题?如何解决?

死锁只有同时满足以下四个条件才会发生:

  • 互斥条件:互斥条件是指多个线程不能同时使用同一个资源

  • 持有并等待条件:持有并等待条件是指,当线程 A 已经持有了资源 1,又想申请资源 2,而资源 2 已经被线程 C 持有了,所以线程 A 就会处于等待状态,但是线程 A 在等待资源 2 的同时并不会释放自己已经持有的资源 1

  • 不可剥夺条件:不可剥夺条件是指,当线程已经持有了资源 ,在自己使用完之前不能被其他线程获取,线程 B 如果也想使用此资源,则只能在线程 A 使用完并释放后才能获取。

  • 环路等待条件:环路等待条件指的是,在死锁发生的时候,两个线程获取资源的顺序构成了环形链

线程池的参数有哪些?

线程池的构造函数有7个参数:

img

  • corePoolSize:线程池核心线程数量。默认情况下,线程池中线程的数量如果 <= corePoolSize,那么即使这些线程处于空闲状态,那也不会被销毁。

  • maximumPoolSize:线程池中最多可容纳的线程数量。当一个新任务交给线程池,如果此时线程池中有空闲的线程,就会直接执行,如果没有空闲的线程且当前线程池的线程数量小于corePoolSize,就会创建新的线程来执行任务,否则就会将该任务加入到阻塞队列中,如果阻塞队列满了,就会创建一个新线程,从阻塞队列头部取出一个任务来执行,并将新任务加入到阻塞队列末尾。如果当前线程池中线程的数量等于maximumPoolSize,就不会创建新线程,就会去执行拒绝策略。

  • keepAliveTime:当线程池中线程的数量大于corePoolSize,并且某个线程的空闲时间超过了keepAliveTime,那么这个线程就会被销毁。

  • unit:就是keepAliveTime时间的单位。

  • workQueue:工作队列。当没有空闲的线程执行新任务时,该任务就会被放入工作队列中,等待执行。

  • threadFactory:线程工厂。可以用来给线程取名字等等

  • handler:拒绝策略。当一个新任务交给线程池,如果此时线程池中有空闲的线程,就会直接执行,如果没有空闲的线程,就会将该任务加入到阻塞队列中,如果阻塞队列满了,就会创建一个新线程,从阻塞队列头部取出一个任务来执行,并将新任务加入到阻塞队列末尾。如果当前线程池中线程的数量等于maximumPoolSize,就不会创建新线程,就会去执行拒绝策略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值