较新(24.3)加速Diffusion模型推理的方法,附带参考文献

1.采用fast ODE solvers:

Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusionbased generative models. In: Conference on Neural Information Processing Systems (NeurIPS) (2022)

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Conference on Neural Information Processing Systems (NeurIPS) 35, 5775–5787 (2022) 

2.将原来的扩散模型作为教师,蒸馏到更快的少步学生网络

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon, S., Ho, J., Salimans, T.: On distillation of guided diffusion models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models. In: International Conference on Learning Representations (ICLR) (2022)

3.一些采用一致性模型训练

Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models. In: International Conference on

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值