【设计并实现一个满足 LRU (最近最少使用) 缓存约束的数据结构】


一、什么是LRU?

LRU是Least Recently Used的缩写,意为最近最少使用。它是一种缓存淘汰策略,用于在缓存满时确定要被替换的数据块。LRU算法认为,最近被访问的数据在将来被访问的概率更高,因此它会优先淘汰最近最少被使用的数据块,以给新的数据块腾出空间。

如图所示:

在这里插入图片描述

  1. 先来3个元素进入该队列
    在这里插入图片描述

  2. 此时来了新的元素,因为此时队列中每个元素的使用的次数都相同(都是1),所以会按照LFU的策略淘汰(即淘汰掉最老的那个)
    在这里插入图片描述

  3. 此时又来了新的元素,而且是队列是已经存在的,就会将该元素调整为最新的位置。
    在这里插入图片描述

  4. 如果此时又来了新的元素,还是”咯咯“,由于”咯咯“已经处于最新的位置,所以大家位置都不变。
    在这里插入图片描述

  5. 同理,一直进行上述的循环


二、LinkedHashMap 实现LRU缓存

以力扣的算法题为例子:


力扣146. LRU 缓存


在 jdk 官方的介绍中可以看出,该数据结构天生适合实现 LRU。

在这里插入图片描述

代码示例一:


/**
 * 利用继承 LinkedHashMap 的方式实现LRU缓存
 */


class LRUCache extends LinkedHashMap<Integer, Integer> {
   
   
	// 缓存容量
    private int capacity;

    public LRUCache(int capacity) {
   
   
    	// 初始化
        super(capacity, 0.75f, true);
        this.capacity = capacity;
    }
    
    public int get(int key) {
   
   
        return super.getOrDefault(key, -1);
    }
    
    public void put(int key, int value) {
   
   
        super.put(key, value);
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
   
   
    	// 重写比较方法
        return super.size() > capacity;
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

代码示例二:

/**
 * 利用 LinkedHashMap 特点的方式实现LRU缓存
 */
 
class LRUCache {
   
   
   // 额定容量
    private final int CAPACITY;
    // 使用 LinkedHashMap 的有序排重特点达到要求
    private final 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值