思路1:常规五步走
int fib(int N)
{
if (N <= 1)
return N;
vector<int> dp(N + 1);//dp数组的含义是第1个元素所对应的值
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++)
{
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
思路2:优化,仅开辟两个数组空间就够了
int fib(int N)
{
if (N <= 1)
return N;
int dp[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++)
{
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
思路:首先定义dp数组含义,然后初始化,然后构造递推方程。
int fib(int N)
{
if (N <= 1)
return N;
int dp[2];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++)
{
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}
优化:
int climbStairs(int n)
{
if (n <= 1)
return n;
int dp[3];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++)
{
int sum = dp[1] + dp[2];
dp[1] = dp[2];
dp[2] = sum;
}
return dp[2];
}
3.746. 使用最小花费爬楼梯 - 力扣(LeetCode)
思路:
int minCostClimbingStairs(vector<int> &cost)
{
if (cost.size() == 2)
return min(cost[0], cost[1]);
int dp[cost.size() + 1]; // dp[i]表示到达第i个台阶的最小花费,cost[i]表示第i个台阶向上爬的花费 ,所以dp大小比cost大1
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++)
{
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}