回归 线性模型

 LinearRegression​ 是拟合一个带有回归系数的, 使得数据的实际观测值和线性近似预测的预测值之间的残差平方和最小的一个线性模型。

 LinearRegression​将采用它的 fit 方法去拟合数组x,y,并将线性模型的回归系数\omega存储在它的coef_中:

>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg.coef_
array([0.5, 0.5])

普通最小二乘的系数估计依赖于特征的独立性。当特征相关且设计矩阵X的列之间具有近似线性相关性时, 设计矩阵趋于奇异矩阵,最小二乘估计对观测目标的随机误差高度敏感,可能产生很大的方差。例如,在没有实验设计的情况下收集数据时,就可能会出现这种多重共线性的情况。

回归:Ridge 通过对系数的大小施加惩罚来解决普通最小二乘的一些问题。与其他线性模型一样ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值