计算机博弈算法(Adversarial Search)

文章介绍了人机博弈中的极小化极大算法,该算法通过构建博弈树来预测对手的策略。negamax是其简化版,不需区分极大值和极小值者。Alpha-beta剪枝是提高搜索效率的关键,通过alpha和beta值避免冗余搜索,分别处理极大值和极小值冗余。估值函数用于评估棋局状态。文章详细阐述了alpha-beta剪枝的原理和实现过程。

一、前言

人机博弈是人工智能的重要分支,人们在这一领域探索的过程中产生了大量的研究成果,而极小化极大算法(minimax)是其中最基础的算法,它由Shannon在1950年正式提出。Alpha-beta剪枝的本质就是一种基于极小化极大算法的改进方法。Knuth等人在1975年优化了算法,提出了负极大值(negamax)概念,这一概念的原理本质上与极小化极大值算法并无不同,但是却不需要系统区分取极大值者和极小值者,使得算法更加统一。此外,Knuth等人也对alpha-beta剪枝算法的搜索效率进行了深入的研究,Pearl也在1982年证明了alpha-beta剪枝原理的最优性

二、极大极小值算法(Minimax Search

1. 极大极小算法

在人机博弈中,双方回合制地进行走棋,己方考虑当自己在所有可行的走法中作出某一特定选择后,对方可能会采取的走法,从而选择最有利于自己的走法。这种对弈过程就构成了一颗博弈树,双方在博弈树中不断搜索,选择对自己最为有利的子节点走棋。在搜索的过程中,将取极大值的一方称为max,取极小值的一方称为min。max总是会选择价值最大的子节点走棋,而min则相反。这就是极小化极大算法的核心思想。

  1. 如果节点是终止节点:应用估值函数求值;

<
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值