优化模型:MATLAB整数规划

本文介绍了整数规划的基本概念,包括其定义、分类和常见求解方法,重点展示了如何在Matlab中使用`intlinprog`函数解决混合整数线性规划问题,通过两个实际案例详细演示了求解过程和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、整数规划介绍

1.1 整数规划的定义

若规划模型的所有决策变量只能取整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。

1.2 整数规划的分类

整数规划模型大致可分为两类:

(1)变量全限制为整数时,称纯(完全)整数规划。

(2)变量部分限制为整数时,称混合整数规划。

1.3 求解方法分类

  • 分支定界法——可求纯或混合整数线性规划。
  • 割平面法——可求纯或混合整数线性规划。
  • 隐枚举法——求解0-1整数规划
    • 过滤隐枚举法
    • 分枝隐枚举法
  • 匈牙利法——解决指派问题
  • 蒙特卡洛法——求解各类规划问题

1.4 整数规划的数学模型

min⁡xfTx\underset{x}{\min}\boldsymbol{f}^T\boldsymbol{x}xminfTx

s.t.{x(intcon)A⋅x⩽bAeq⋅x=beqlb⩽x⩽ub s.t.\left\{ \begin{array}{c} \boldsymbol{x}\left( intcon \right)\\ \boldsymbol{A}\cdot \boldsymbol{x}\leqslant \boldsymbol{b}\\ Aeq\cdot \boldsymbol{x}=beq\\ lb\leqslant \boldsymbol{x}\leqslant ub\\ \end{array} \right. s.t.x(intcon)AxbAeqx=beqlbxub
式中:f\boldsymbol{f}f,x\boldsymbol{x}x,b\boldsymbol{b}b,beq,lb,ub为列向量;A\boldsymbol{A}A,Aeq为矩阵。

二、案例分析

Matlab求解混合整数线性规划的命令为

[x,fval]=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)这里是引用

例1:利用matlab求解该整数线性规划模型。
max⁡z=100x1+60x2\max z=100x_1+60x_2maxz=100x1+60x2
s.t.{5x1+2x2⩽2704x1+3x1⩽2503x1+4x2⩽200x2=4x1x1,x2为非负整数s.t.\left\{ \begin{array}{c} 5x_1+2x_2\leqslant 270\\ 4x_1+3x_1\leqslant 250\\ 3x_1+4x_2\leqslant 200\\ x_2=4x_1\\ x_1,x_2\text{为非负整数}\\ \end{array} \right. s.t.5x1+2x22704x1+3x12503x1+4x2200x2=4x1x1,x2为非负整数
MATLAB代码:

clc,clear
f=[-100;-60];
intcon=[1,2];
A=[5,2;4,3;3,4];
b=[270;250;200];
aeq=[-4,1];
beq=0;
lb=[0;0];
ub=[inf;inf];
[x,fval]=intlinprog(f,intcon,A,b,aeq,beq,lb,ub)
disp("x1值:" + x(1))
disp("x2值:" + x(2))
disp("最大值:" + (-fval))

求解结果:

例2:利用matlab求解下列混合整数规划问题。
min⁡z=−3x1−2x2−x3\min z=-3x_1-2x_2-x_3minz=3x12x2x3
s.t.{x1+x2+x3⩽74x1+2x2+x3=12x1,x2≫0x1=0或1s.t.\left\{ \begin{array}{c} x_1+x_2+x_3\leqslant 7\\ 4x_1+2x_2+x_3=12\\ x_1,x_2\gg 0\\ x_1=0\text{或}1\\ \end{array} \right. s.t.x1+x2+x374x1+2x2+x3=12x1,x20x1=01
MATLAB代码:

clc,clear
f=[-3;-2;-1];
intcon=3;%只有第3个变量为整数变量
A=ones(1,3);
b=7;
aeq=[4,2,1];
beq=12;
lb=zeros(3,1);
ub=[inf;inf;1];
[x,fval]=intlinprog(f,intcon,A,b,aeq,beq,lb,ub)

求解结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抱抱宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值