有 N 种物品和一个容量是 V 的背包。
物品一共有三类:
- 第一类物品只能用1次(01背包);
- 第二类物品可以用无限次(完全背包);
- 第三类物品最多只能用 si 次(多重背包);
每种体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数 N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
- si=−1 表示第 i 种物品只能用1次;
- si=0 表示第 i 种物品可以用无限次;
- si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000
输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8
题解:问题本身不难,只要将不同的物品,按照数量进行归类,最后同一转变为01背包问题,问题就迎刃而解了。
代码如下:
#include<bits/stdc++