基于前馈神经网络FNN实现股价多变量时序预测(PyTorch版)

Feed-forward neural networks

前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

前馈神经网络(Feedforward Neural Network, FNN)作为深度学习中的一种基本网络结构,以其强大的非线性拟合能力和自适应性,在金融时间序列预测中展现出巨大的潜力。前馈神经网络通过模拟人脑神经元的连接方式,构建了一个多层次的计算模型,能够自动学习和提取数据中的复杂特征和规律,从而对未来的市场走势进行预测。本文旨在探讨基于前馈神经网络实现股票多变量时序预测的方法。

前馈神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

矩阵猫咪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值