导论
1956年夏季首次提出“人工智能”这一术语,科学家们尝试了各种方法来实现它。这些方法包括专家系统,决策树、归纳逻辑、聚类等等,但这些都是假智能。直到人工神经网络技术的出现,才让机器拥有了“真智能”。为什么说之前的方法都是假智能呢?因为我们人类能清清楚楚地知道它们内部的分析过程,它们只是一个大型的复杂的程序而已;而人工神经网络则不同,它的内部是一个黑盒子,就像我们人类的大脑一样,我们不知道它内部的分析过程,我们不知道它是如何识别出人脸的,也不知道它是如何打败围棋世界冠军的。我们只是为它构造了一个躯壳而已,就像人类一样,我们只是生出了一个小孩而已,他脑子里是如何想的我们并不知道!
人工神经网络正是模仿了上面的网络结构。下面是一个人工神经网络的构造图。每一个圆代表着一个神经元,他们连接起来构成了一个网络。
大脑的结构越简单,那么智商就越低。单细胞生物是智商最低的了。人工神经网络也是一样的,网络越复杂它就越强大,所以我们需要深度神经网络。这里的深度是指层数多,层数越多那么构造的神经网络就越复杂。
训练深度神经网络的过程就叫做深度学习,网络构建好了后,我们只需要负责不停地将训练数据输入到神经网络中,它内部就会自己不停地发生变化不停地学习。
基本判断—逻辑回归
打比方说我们想要训练一个深度神经网络来识别猫。我们只需要不停地将猫的图片输入到神经网络中去。训练成功后,我们任意拿来一张新的图片,它都能判断出里面