一些算法可以处理部分带标签的训练数据,通常是大量不带标签数据加上小部分带标签数据。这称作半监督学习。
一些图片存储服务,比如 Google Photos,是半监督学习的好例子。一旦上传了所有家庭相片,它就能自动识别到人物 A 出现在了相片 1、5、11 中,另一个人 B 出现在了相片 2、5、7 中。这是算法的非监督部分(聚类)。现在系统需要的就是告诉它这两个人是谁。只要给每个人一个标签,算法就可以命名每张照片中的每个人,特别适合搜索照片。
多数半监督学习算法是非监督和监督算法的结合。例如,深度信念网络(deep belief networks)是基于被称为互相叠加的受限玻尔兹曼机(restricted Boltzmann machines,RBM)的非监督组件。RBM 是先用非监督方法进行训练,再用监督学习方法对整个系统进行微调。
半监督学习简介
最新推荐文章于 2024-07-24 00:25:56 发布