给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。
例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4],
连续子序列 [4,-1,2,1] 的和最大,为 6。
穷举法
最简单的方法就是直接求解出所有的子序列之和,然后比较子序列之和,求出最大值。那么如何求解子序列呢?首先子序列的起始位置可能是任意的,结束位置也可以是任意的。可以一层循环确定子序列的起始位置,嵌套一层循环确定子序列的结束位置并求和,
def getMaxSubString(arr):
sum_list = []
for i in range(len(arr)):
cur_sum = 0
for j in range(i, len(arr)):
cur_sum += arr[j]
sum_list.append(cur_sum)
max_element = max(sum_list)
return max_element
if __name__ == '\_\_main\_\_':
res = getMaxSubString([-2, 1, -3, 4, -1, 2, 1, -5, 4])
print(res)
优化穷举
不使用一个额外的空间存在每次计算的子序列和,而是每次计算完成之后,直接比较大小
def getMaxSubSeqSum(arr):
# sum\_list = []
max_element = arr[0]
for i in range(len(arr)):
cur_sum = 0
for j in range(i, len(arr)):
cur_sum += arr[j]
# sum\_list.append(cur\_sum)
if cur_sum > max_element:
max_element = cur_sum
# max\_element = max(sum\_list)
return max_element
if __name__ == '\_\_main\_\_':
res = getMaxSubSeqSum([-2, 1, -3, 4, -1, 2, 1, -5, 4])
print(res)
分治法
分治法是一种使用广泛的算法,其基本思想是:“如果整个问题比较复杂,可以将问题分化,各个击破”。分治包含“分”和“治”两个过程,先将问题分成两个大致相等的子问题,然后递归地对它们求解。
在此例中,先将序列等分成左右两份,最大子序列只可能出现在三个地方:
- 整个子序列出现在左半部分;
- 整个子序列出现在右半部分;
- 跨越左右边界出现在中间。
最大子序列和要么在左半部分,要么在右半部分,要么横跨左右两部分。所以分别求出这三种情况的最大序列和,比较求得最终的最大子序列和。左半部分和右半部分可以用递归求,那么只需要在函数中求解横跨两部分的最大子序列即可。从中间值开始,向前面两种方法那样,起始位置为中间下标,一部分向左求和,另一部分向右求和,最终两部分相加即可。因为在Python中组合数据类型可以不用声明全局,直接是地址传值,所以直接用了。
def divide\_and\_conquer(lst, left, right):
if left == right:
if lst[left] > 0:
return lst[left]
else:
return 0
center = (left + right) // 2
# 左边界最大子序列和右边界最大子序列
max_left_sum = divide_and_conquer(lst, left, center)
max_right_sum = divide_and_conquer(lst, center + 1, right)
max_left_border_sum = left_border_sum = 0
for i in range(center, left - 1, -1):
left_border_sum += lst[i]
if left_border_sum > max_left_border_sum:
max_left_border_sum = left_border_sum
max_right_border_sum = right_border_sum = 0
for i in range(center + 1, right + 1):
right_border_sum += lst[i]
if right_border_sum > max_right_border_sum:
max_right_border_sum = right_border_sum
# 左、右与跨越边界的子序列
return max(max_left_sum, max_right_sum, max_left_border_sum + max_right_border_sum)
if __name__ == '\_\_main\_\_':
lst = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(divide_and_conquer(lst, 0, len(lst)-1))
动态规划
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
,t_70,g_se,x_16#pic_center)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-83cQg1hm-1712847002727)]