Python多线程编程:深入理解threading模块及代码实战【第99篇—Multiprocessing模块】_python multithreading模块

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在进行多线程编程时,有一些常见的注意事项需要特别关注:

  • 线程安全性:确保多个线程同时访问共享资源时不会引发数据竞争和不一致性。
  • 死锁:当多个线程相互等待对方释放锁时可能发生死锁,需要谨慎设计和使用锁。
  • GIL限制:Python的全局解释器锁可能限制多线程在CPU密集型任务中的性能提升。
  • 异常处理:需要在每个线程中适当处理异常,以防止异常在一个线程中引发但在其他线程中未被捕获。
11. 多线程的性能优化

在一些情况下,我们可以通过一些技巧来优化多线程程序的性能:

  • 线程池:使用concurrent.futures模块中的ThreadPoolExecutor来创建线程池,提高线程的重用性。
  • 队列:使用队列来协调多个线程之间的工作,实现生产者-消费者模型。
  • 避免GIL限制:对于CPU密集型任务,考虑使用多进程、asyncio等其他并发模型。
13. 面向对象的多线程设计

在实际应用中,我们通常会面对更复杂的问题,需要将多线程和面向对象设计结合起来。以下是一个简单的例子,演示如何使用面向对象的方式来设计多线程程序:

import threading
import time

class WorkerThread(threading.Thread):
    def \_\_init\_\_(self, name, delay):
        super().__init__()
        self.name = name
        self.delay = delay

    def run(self):
        print(f"{self.name} started.")
        time.sleep(self.delay)
        print(f"{self.name} completed.")

if __name__ == "\_\_main\_\_":
    thread1 = WorkerThread("Thread 1", 2)
    thread2 = WorkerThread("Thread 2", 1)

    thread1.start()
    thread2.start()

    thread1.join()
    thread2.join()

    print("Main thread continues...")

在这个例子中,我们创建了一个WorkerThread类,继承自Thread类,并重写了run方法,定义了线程的执行逻辑。每个线程被赋予一个名字和一个延迟时间。

14. 多线程与资源管理器

考虑一个场景,我们需要创建一个资源管理器,负责管理某个资源的分配和释放。这时,我们可以使用多线程来

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值