中文文本分类 pytorch实现--学习笔记

from tensorboardX import SummaryWriter
writer=SummaryWriter(comment='TextCNN')
dummy_input = torch.rand(4762,300)
writer.add_graph(model, (dummy_input,))

TextCNN   ---epoc=20 结果

Loading data...
Vocab size: 4762
180000it [00:00, 241581.78it/s]
10000it [00:00, 280066.51it/s]
10000it [00:00, 281899.90it/s]
Time usage: 0:00:01
<bound method Module.parameters of Model(
  (embedding): Embedding(4762, 300)
  (convs): ModuleList(
    (0): Conv2d(1, 256, kernel_size=(2, 300), stride=(1, 1))
    (1): Conv2d(1, 256, kernel_size=(3, 300), stride=(1, 1))
    (2): Conv2d(1, 256, kernel_size=(4, 300), stride=(1, 1))
  )
  (dropout): Dropout(p=0.5, inplace=False)
  (fc): Linear(in_features=768, out_features=10, bias=True)
)>
Epoch [1/20]
Iter:      0,  Train Loss:   2.3,  Train Acc: 11.72%,  Val Loss:   2.7,  Val Acc: 10.00%,  Time: 0:00:01 *
Iter:    100,  Train Loss:  0.77,  Train Acc: 72.66%,  Val Loss:  0.69,  Val Acc: 78.69%,  Time: 0:00:02 *
Iter:    200,  Train Loss:  0.71,  Train Acc: 73.44%,  Val Loss:  0.55,  Val Acc: 83.29%,  Time: 0:00:02 *
Iter:    300,  Train Loss:  0.45,  Train Acc: 85.16%,  Val Loss:  0.49,  Val Acc: 84.73%,  Time: 0:00:03 *
Iter:    400,  Train Loss:  0.74,  Train Acc: 80.47%,  Val Loss:  0.47,  Val Acc: 85.22%,  Time: 0:00:03 *
Iter:    500,  Train Loss:  0.39,  Train Acc: 88.28%,  Val Loss:  0.43,  Val Acc: 86.33%,  Time: 0:00:03 *
Iter:    600,  Train Loss:  0.49,  Train Acc: 83.59%,  Val Loss:  0.42,  Val Acc: 86.65%,  Time: 0:00:04 *
Iter:    700,  Train Loss:  0.43,  Train Acc: 82.81%,  Val Loss:   0.4,  Val Acc: 87.32%,  Time: 0:00:04 *
Iter:    800,  Train Loss:  0.45,  Train Acc: 86.72%,  Val Loss:   0.4,  Val Acc: 87.88%,  Time: 0:00:05 *
Iter:    900,  Train Loss:  0.43,  Train Acc: 86.72%,  Val Loss:  0.39,  Val Acc: 88.09%,  Time: 0:00:05 *
Iter:   1000,  Train Loss:  0.33,  Train Acc: 88.28%,  Val Loss:  0.38,  Val Acc: 88.07%,  Time: 0:00:06 *
Iter:   1100,  Train Loss:  0.39,  Train Acc: 89.84%,  Val Loss:  0.37,  Val Acc: 88.54%,  Time: 0:00:06 *
Iter:   1200,  Train Loss:  0.37,  Train Acc: 87.50%,  Val Loss:  0.37,  Val Acc: 88.73%,  Time: 0:00:07 *
Iter:   1300,  Train Loss:  0.41,  Train Acc: 85.16%,  Val Loss:  0.36,  Val Acc: 88.74%,  Time: 0:00:07 *
Iter:   1400,  Train Loss:  0.45,  Train Acc: 85.94%,  Val Loss:  0.35,  Val Acc: 89.03%,  Time: 0:00:07 *
Epoch [2/20]
Iter:   1500,  Train Loss:  0.37,  Train Acc: 89.06%,  Val Loss:  0.35,  Val Acc: 89.08%,  Time: 0:00:08 *
Iter:   1600,  Train Loss:  0.32,  Train Acc: 92.19%,  Val Loss:  0.35,  Val Acc: 89.16%,  Time: 0:00:08 *
Iter:   1700,  Train Loss:   0.4,  Train Acc: 89.06%,  Val Loss:  0.35,  Val Acc: 89.60%,  Time: 0:00:09 *
Iter:   1800,  Train Loss:  0.34,  Train Acc: 90.62%,  Val Loss:  0.36,  Val Acc: 88.76%,  Time: 0:00:09
Iter:   1900,  Train Loss:  0.41,  Train Acc: 87.50%,  Val Loss:  0.34,  Val Acc: 89.43%,  Time: 0:00:10 *
Iter:   2000,  Train Loss:  0.38,  Train Acc: 83.59%,  Val Loss:  0.34,  Val Acc: 89.36%,  Time: 0:00:10
Iter:   2100,  Train Loss:  0.38,  Train Acc: 90.62%,  Val Loss:  0.34,  Val Acc: 89.47%,  Time: 0:00:11 *
Iter:   2200,  Train Loss:  0.25,  Train Acc: 89.84%,  Val Loss:  0.34,  Val Acc: 89.75%,  Time: 0:00:11 *
Iter:   2300,  Train Loss:   0.3,  Train Acc: 92.19%,  Val Loss:  0.34,  Val Acc: 89.73%,  Time: 0:00:11
Iter:   2400,  Train Loss:  0.25,  Train Acc: 93.75%,  Val Loss:  0.33,  Val Acc: 89.77%,  Time: 0:00:12 *
Iter:   2500,  Train Loss:  0.15,  Train Acc: 95.31%,  Val Loss:  0.33,  Val Acc: 90.32%,  Time: 0:00:12 *
Iter:   2600,  Train Loss:  0.39,  Train Acc: 86.72%,  Val Loss:  0.33,  Val Acc: 89.86%,  Time: 0:00:13
Iter:   2700,  Train Loss:  0.27,  Train Acc: 89.06%,  Val Loss:  0.33,  Val Acc: 89.83%,  Time: 0:00:13
Iter:   2800,  Train Loss:  0.34,  Train Acc: 90.62%,  Val Loss:  0.33,  Val Acc: 89.99%,  Time: 0:00:14
Epoch [3/20]
Iter:   2900,  Train Loss:  0.32,  Train Acc: 91.41%,  Val Loss:  0.32,  Val Acc: 90.19%,  Time: 0:00:14 *
Iter:   3000,  Train Loss:  0.27,  Train Acc: 92.19%,  Val Loss:  0.33,  Val Acc: 90.11%,  Time: 0:00:15
Iter:   3100,  Train Loss:  0.26,  Train Acc: 92.97%,  Val Loss:  0.33,  Val Acc: 89.99%,  Time: 0:00:15
Iter:   3200,  Train Loss:   0.4,  Train Acc: 89.06%,  Val Loss:  0.33,  Val Acc: 90.22%,  Time: 0:00:15
Iter:   3300,  Train Loss:   0.3,  Train Acc: 92.19%,  Val Loss:  0.33,  Val Acc: 90.29%,  Time: 0:00:16
Iter:   3400,  Train Loss:  0.31,  Train Acc: 90.62%,  Val Loss:  0.33,  Val Acc: 90.14%,  Time: 0:00:16
Iter:   3500,  Train Loss:   0.2,  Train Acc: 92.97%,  Val Loss:  0.33,  Val Acc: 90.30%,  Time: 0:00:17
Iter:   3600,  Train Loss:  0.16,  Train Acc: 94.53%,  Val Loss:  0.33,  Val Acc: 90.31%,  Time: 0:00:17
Iter:   3700,  Train Loss:  0.35,  Train Acc: 86.72%,  Val Loss:  0.33,  Val Acc:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值