算法笔记|Day11二叉树

☆☆☆☆☆leetcode 144.二叉树的前序遍历

题目链接:leetcode 144.二叉树的前序遍历

题目分析

前序遍历是深度优先遍历,分别采用递归方法和迭代方法对二叉树遍历,为了前序、中序、后序三种遍历迭代方法代码逻辑相同增添统一迭代方法。

代码

1.递归遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        preorder(root,res);
        return res;
    }

    public void preorder(TreeNode root,List<Integer> res){
        if(root==null)
            return;
        res.add(root.val);
        preorder(root.left,res);
        preorder(root.right,res);
    }
}
2.迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        if(root==null)
            return res;
        Stack<TreeNode> stack=new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.pop();
            res.add(node.val);
            if(node.right!=null)
                stack.push(node.right);
            if(node.left!=null)
                stack.push(node.left);
        }
        return res;
    }
}
3.统一迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer>res=new ArrayList<>();
        Stack<TreeNode> stack=new Stack<>();
        if(root!=null)
            stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.peek();
            if(node!=null){
                stack.pop();
                if(node.right!=null)
                    stack.push(node.right);
                if(node.left!=null)
                    stack.push(node.left);
                stack.push(node);
                stack.push(null);             
            }else{
                stack.pop();
                node=stack.peek();
                stack.pop();
                res.add(node.val);
            }
        }
        return res;
    }
}

☆☆☆☆☆leetcode 94.二叉树的中序遍历

题目链接:leetcode 94.二叉树的中序遍历

题目分析

中序遍历是深度优先遍历,分别采用递归方法和迭代方法对二叉树遍历,为了前序、中序、后序三种遍历迭代方法代码逻辑相同增添统一迭代方法。

代码

1.递归遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        inorder(root,res);
        return res;
    }

    public void inorder(TreeNode root,List<Integer> res){
        if(root==null)
            return;
        inorder(root.left,res);
        res.add(root.val);
        inorder(root.right,res);
    }
}
2.迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        if(root==null)
            return res;
        Stack<TreeNode> stack=new Stack<>();
        TreeNode cur=root;
        while(cur!=null||!stack.isEmpty()){
            if(cur!=null){
                stack.push(cur);
                cur=cur.left;
            }else{
                cur=stack.pop();
                res.add(cur.val);
                cur=cur.right;
            }
        }
        return res;
    }
}
3.统一迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer>res=new ArrayList<>();
        Stack<TreeNode> stack=new Stack<>();
        if(root!=null)
            stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.peek();
            if(node!=null){
                stack.pop();
                if(node.right!=null)
                    stack.push(node.right);
                stack.push(node);
                stack.push(null);
                if(node.left!=null)
                    stack.push(node.left);
            }else{
                stack.pop();
                node=stack.peek();
                stack.pop();
                res.add(node.val);
            }
        }
        return res;   
    }
}

☆☆☆☆☆leetcode 145.二叉树的后序遍历

题目链接:leetcode 145.二叉树的后序遍历

题目分析

后序遍历是深度优先遍历,分别采用递归方法和迭代方法对二叉树遍历,为了前序、中序、后序三种遍历迭代方法代码逻辑相同增添统一迭代方法。

代码

1.递归遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        postorder(root,res);
        return res;
    }

    public void postorder(TreeNode root,List<Integer> res){
        if(root==null)
            return;
        postorder(root.left,res);
        postorder(root.right,res);
        res.add(root.val);
    }
}
2.迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        if(root==null)
            return res;
        Stack<TreeNode> stack=new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.pop();
            res.add(node.val);
            if(node.left!=null)
                stack.push(node.left);
            if(node.right!=null)
                stack.push(node.right);
        }
        Collections.reverse(res);
        return res;
    }
}
3.统一迭代遍历
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
                List<Integer>res=new ArrayList<>();
        Stack<TreeNode> stack=new Stack<>();
        if(root!=null)
            stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.peek();
            if(node!=null){
                stack.pop();
                stack.push(node);
                stack.push(null);
                if(node.right!=null)
                    stack.push(node.right);
                if(node.left!=null)
                    stack.push(node.left);
            }else{
                stack.pop();
                node=stack.peek();
                stack.pop();
                res.add(node.val);
            }
        }
        return res;
    }
}

☆☆☆☆☆leetcode 102.二叉树的层序遍历

题目链接:leetcode 102.二叉树的层序遍历

题目分析

层序遍历是广度优先遍历,可以使用队列来实现。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> res=new ArrayList<>();
        Deque<TreeNode> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            List<Integer> itemList=new ArrayList<>();
            int len=deque.size();
            while(len>0){
                TreeNode tempNode=deque.poll();
                itemList.add(tempNode.val);
                if(tempNode.left!=null)
                    deque.add(tempNode.left);
                if(tempNode.right!=null)
                    deque.add(tempNode.right);
                len--;
            }
            res.add(itemList);
        }
        return res;
    }
}

☆☆☆☆☆leetcode 107.二叉树的层次遍历II

题目链接:leetcode 107.二叉树的层次遍历II

题目分析

需要将结果res数组反转一下,相当于将后面的结果加到list表头。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> res=new ArrayList<>();
        Deque<TreeNode> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            List<Integer> itemList=new ArrayList<>();
            int len=deque.size();
            while(len>0){
                TreeNode tempNode=deque.poll();
                itemList.add(tempNode.val);
                if(tempNode.left!=null)
                    deque.add(tempNode.left);
                if(tempNode.right!=null)
                    deque.add(tempNode.right);
                len--;
            }
            res.add(0,itemList);
        }
        return res;
    }
}

☆☆☆☆☆leetcode 199.二叉树的右视图

题目链接:leetcode 199.二叉树的右视图

题目分析

层序遍历时,判断是否遍历到单层的最后面的元素,若是放进res数组中。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        Deque<TreeNode> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            List<Integer> itemList=new ArrayList<>();
            int len=deque.size();
            for(int i=0;i<len;i++){
                TreeNode tempNode=deque.poll();
                if(tempNode.left!=null)
                    deque.add(tempNode.left);
                if(tempNode.right!=null)
                    deque.add(tempNode.right);
                if(i==len-1)
                    res.add(tempNode.val);
            }
        }
        return res;
    }
}

☆☆☆☆☆leetcode 637.二叉树的层平均值

题目链接:leetcode 637.二叉树的层平均值

题目分析

层序遍历时,每一层求总和并取均值。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> res=new ArrayList<>();
        Deque<TreeNode> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            int len=deque.size();
            double sum=0;
            for(int i=0;i<len;i++){
                TreeNode tempNode=deque.poll();
                if(tempNode.left!=null)
                    deque.add(tempNode.left);
                if(tempNode.right!=null)
                    deque.add(tempNode.right);
                sum+=tempNode.val; 
            }
            res.add(sum/len);
        }
        return res;
    }
}

☆☆☆☆☆leetcode 429.N叉树的层序遍历

题目链接:leetcode 429.N叉树的层序遍历

题目分析

较二叉树,每个节点有多个子节点。

代码

/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> res=new ArrayList<>();
        Deque<Node> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            List<Integer> itemList=new ArrayList<>();
            int len=deque.size();
            for(int i=0;i<len;i++){
                Node tempNode=deque.poll();
                itemList.add(tempNode.val);
                List<Node> children=tempNode.children;
                if(children==null||children.size()==0)
                    continue;
                for(Node child:children)
                    if(child!=null)
                        deque.add(child);
            }
            res.add(itemList);
        }
        return res;
    }
}

☆☆☆☆☆leetcode 515.在每个树行中找最大值

题目链接:leetcode 515.在每个树行中找最大值

题目分析

层序遍历时,每一层求最大值。

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> largestValues(TreeNode root) {
        List<Integer> res=new ArrayList<>();
        Deque<TreeNode> deque=new LinkedList<>();
        if(root==null)
            return res;
        deque.add(root);
        while(!deque.isEmpty()){
            int max=Integer.MIN_VALUE;
            int len=deque.size();
            for(int i=0;i<len;i++){
                TreeNode tempNode=deque.poll();
                if(tempNode.left!=null)
                    deque.add(tempNode.left);
                if(tempNode.right!=null)
                    deque.add(tempNode.right);
                max=Math.max(max,tempNode.val); 
            }
            res.add(max);
        }
        return res;
    }
}

☆☆☆☆☆leetcode 116.填充每个节点的下一个右侧节点指针

题目链接:leetcode 116.填充每个节点的下一个右侧节点指针

题目分析

层序遍历时,让前一个节点指向本节点。

代码

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        Deque<Node> deque=new LinkedList<>();
        if(root!=null)
            deque.add(root);
        while(!deque.isEmpty()){
            int len=deque.size();
            Node cur=deque.poll();
            if(cur.left!=null)
                deque.add(cur.left);
            if(cur.right!=null)
                deque.add(cur.right);
            for(int i=1;i<len;i++){
                Node next=deque.poll();
                if(next.left!=null)
                    deque.add(next.left);
                if(next.right!=null)
                    deque.add(next.right);
                cur.next=next;
                cur=next;
            }
        }
        return root;  
    }
}

☆☆☆☆☆leetcode 117.填充每个节点的下一个右侧节点指针II

题目链接:leetcode 117.填充每个节点的下一个右侧节点指针II

题目分析

层序遍历时,让前一个节点指向本节点,但此题不一定为完全二叉树。

代码

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        Deque<Node> deque=new LinkedList<>();
        if(root!=null)
            deque.add(root);
        while(!deque.isEmpty()){
            int len=deque.size();
            Node node=null;
            Node nodePre=null;
            for(int i=0;i<len;i++){
                if(i==0){
                    nodePre=deque.poll();
                    node=nodePre;
                }else{
                    node=deque.poll();
                    nodePre.next=node;
                    nodePre=nodePre.next;
                }
                if(node.left!=null)
                    deque.add(node.left);
                if(node.right!=null)
                    deque.add(node.right);
            }
        }
        return root;  
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值