李沐基于Pytorch的深度学习笔记(8)-基础优化算法(附代码)

from sklearn.datasets import load_boston
import joblib
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


"""线性回归预测房子价格"""
# 获取数据
lb = load_boston()
print(lb)
# 分割数据集 (训练集、测试集)
x_train, x_text, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
# 进行标准化
# 特征值 目标值 都标准化
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_text = std_x.fit_transform(x_text)

std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1, 1))  # 传入数据必须二维
y_test = std_y.fit_transform(y_test.reshape(-1, 1))
# estimator预测
# 正规方程求解方式
lr = LinearRegression()
lr.fit(x_train, y_train)

# print(lr.coef_)

y_lr_predict = std_y.inverse_transform(lr.predict(x_text))
# print("预测:\n", y_lr_predict)
print("均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_lr_predict))
print(f"R : {lr.score(x_test, y_test)}")
# 梯度下降方式
sgd = SGDRegressor()
sgd.fit(x_train, y_train)

y_sgd_predict = std_y.inverse_transform(sgd.predict(x_text))
print(y_sgd_predict)
print("均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict))
print(f"R : {sgd.score(x_test, y_test)}")

本文参考的是下面这篇博文:

这篇文章里有些东西其实已经用不了了,我自己改了下

线性回归及python代码实现___zachary的博客-优快云博客_python线性回归代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ReedswayYuH.C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值