先附上代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
#获取数据
iris = load_iris()
X = iris.data
# 数据可视化
# 散点图,plt.scatter(x(横轴数据),y(纵轴数据),c="颜色"
marker="点的形状"
labal="点的标签"
plt.scatter(X[:, 0], X[:, 1], c="black", marker='o',
label='see')
##设置 x,y 轴的名字
plt.xlabel('petal length')
plt.ylabel('petal width')
##设置图的名字
plt.title("Data")
##显示图像
plt.show()
#这里我们分成了3类
kmeans=KMeans(n_clusters=3)
kmeans.fit(X)
y_kmeans=kmeans.predict(X)
#可视化聚类后的结果
x0 = X[y_kmeans == 0]
x1 = X[y_kmeans == 1]
x2 = X[y_kmeans == 2]
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o',
label='label0')
plt.scatter(x1[:, 0], x1[:, 1],