(aiohttp-asyncio-FFmpeg-Docker-SRS)实现异步摄像头转码服务器

本文介绍了如何使用Python、aiohttp和ffmpeg构建一个可以动态管理SRS流媒体服务器的Web接口,支持RTSP转码任务的启动和停止,同时通过Docker部署,实现跨域资源共享(CORS)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

在先前的博客文章中,我们已经搭建了一个基于SRS的流媒体服务器。现在,我们希望通过Web接口来控制这个服务器的行为,特别是对于正在进行的 RTSP 转码任务的管理。这将使我们能够在不停止整个服务器的情况下,动态地启动或停止摄像头的转码过程。

Docker部署 SRS rtmp/flv流媒体服务器-优快云博客文章浏览阅读360次,点赞7次,收藏5次。SRS(Simple Realtime Server)是一款开源的流媒体服务器,具有高性能、高可靠性、高灵活性的特点,能够支持直播、点播、转码等多种流媒体应用场景。SRS 不仅提供了流媒体服务器,还提供了适用于多种平台的客户端 SDK 和在线转码等辅助服务,是一款十分强大的流媒体解决方案。https://blog.youkuaiyun.com/m0_56659620/article/details/135400510?spm=1001.2014.3001.5501

2. 技术选择

在选择技术方案时,考虑到构建视频流转码服务的需求,我们将采用Python编程语言,并结合asyncio和aiohttp库。这一选择基于异步框架的优势,以下是对异步框架和同步框架在视频流转码场景中的优缺点的明确总结:

异步框架的优势:

  • 高并发处理: 异步框架通过非阻塞方式处理请求,能够高效处理大量并发请求,确保系统在高负载下保持稳定性。
  • 异步I/O: 支持异步I/O操作,允许在等待I/O操作完成的同时继续处理其他请求,提高整体效率。
  • 资源利用率高: 能够更有效地利用系统资源,同时处理多个请求,提高视频转码效率。
  • 事件驱动: 采用事件驱动模型,适应实时性要求高的视频流处理,能够立即响应新的转码请求。

同步框架的缺点:

  • 阻塞: 阻塞调用可能导致整个程序停滞,尤其在处理大文件或网络请求时可能引发性能问题,特别是在高并发场景下。
  • 低并发: 每个请求需要独立的线程或进程,可能导致系统资源耗尽,降低并发处理能力,对于需要同时处理多个视频流的情况可能不够高效。

考虑到处理大量并发请求、提高系统性能和响应性的需求,采用异步框架是更为合适的选择。异步框架的高并发处理能力、异步I/O支持、高资源利用率以及事件驱动的特性使其更适用于实时性要求较高的视频流转码服务。

3. 代码实现(必须在linux系统运行,4步骤为部署攻略)

3.1 导入必要的库

首先,我们导入所需的库,包括asyncio、aiohttp、aiohttp_cors和logging。

import asyncio
from aiohttp import web
import aiohttp_cors
import logging

3.2 设置日志


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值